AMD Cheat Sheet

AMD Processors
Argon (K7)AthlonSlot A500-700512K22 + cache250184100 
Pluto (K75)AthlonSlot A550-850512K22 + cache180102100 
Orion (K75)AthlonSlot A900-1000512K22 + cache180102100 
SpitfireDuron462600-95064K25180100100 
MorganDuron462900-130064K25.2180106100 
ThunderbirdAthlon "B"462650-1400256K37180117100 
ThunderbirdAthlon "C"4621000-1400256K37180117133 
PalominoAthlon XP/M462850-1733256K37.5180129100/133 
PalominoAthlon MP4621000-1733256K37.5180129100/1331-2
Thoroughbred AAthlon XP4621467-1833?256K37.513080133 
Thoroughbred BAthlon XP/M4621200-2133256K37.513084133 
Thoroughbred BAthlon XP4622083-2250256K37.513084166 
Thoroughbred BAthlon MP4621667-2133256K37.5130841331-2
BartonAthlon XP/M4621467-2133512K54.3130101133 
BartonAthlon XP4621833-2167512K54.3130101166 
BartonAthlon XP4622100-2200512K54.3130101200 
BartonAthlon MP4622133512K54.31301011661-2
ApplebredDuron4621400-180064K25.2*13084*133 
ThortonAthlon XP4621667-2067256K37.5*130101*133 
Thoroughbred BSempron4621500-2000+256K37.513084166 
SledgehammerAthlon FX9402200-???1024K105.9130 SOI193200Y 
SledgehammerOpteron9401400-24001024K105.9130 SOI193200Y1-8
SledgehammerAthlon FX9392400-???1024K105.9130 SOI193200Y 
ClawhammerAthlon 647541800-2200(?)512K105.9130 SOI193200Y 
ClawhammerAthlon 647542000-2400(?)1024K105.9130 SOI193200Y 
NewcastleAthlon 647541800-2600(?)512K68.5130 SOI144200Y 
NewcastleAthlon 649392200-2600(?)512K68.5130 SOI144200Y 
San DiegoAthlon FX9392600-???1024K105.9(?)90 SOI114(?)200Y 
ParisSempron7541800-???256K~50(?)130 SOI118200N 
VenusOpteron 1xx94090 SOI200?Y 
TroyOpteron 2xx94090 SOI200?Y1-2
AthensOpteron 8xx94090 SOI200?Y1-8
OdessaAthlon 64 M?754?512K130 SOI200?Y 
WinchesterAthlon 64939512K68.5(?)90 SOI83(?)200Y 
DublinAthlon XP-M46237.5130 SOI128200?N 
NewarkAthlon 64-M LP754?90 SOI200?Y 
LancasterAthlon 64 M754?90 SOI200?Y 
GeorgetownAthlon XP M462/754?90 SOI200?N? 
SonoraAthlon XP-M LP462/754?90 SOI200?N? 
DenmarkOpteron 1xx94090 SOI200?Y 
ItalyOpteron 2xx94090 SOI200?Y1-2
EgyptOpteron 8xx94090 SOI200?Y1-8
ToledoDual Core FX93990 SOI200?Y2C
PalermoSempron (?)939 (?)256K?~50(?)90 SOI62(?)200N? 
OakvilleAthlon 64 Mobile754?512K?90 SOI200?Y 
VictoriaSempron (?)754 (?) 256K?~50(?)90 SOI62(?)200N? 
* Die Size and/or transistor count is based off a larger CPU core with a portion of the die disabled.
** Various steppings/sources listed different die sizes.
*** The bus speed all Athons/Durons is double-pumped, but the CPU multiplier is based off the listed speed.

A few notes to clarify the information. The stated die sizes and transistor counts for the Applebred and Thorton reflect the fact that these processors are Thoroughbred and Barton cores, respectively, with half of the L2 cache disabled, which is why they have a single asterisk next to them. There have been reports of hacking the Thorton processors and turning them into full Barton CPUs, but considering the insignificant cost difference these days, it's probably not worth worrying about. AMD plans on discontinuing the Barton soon anyway, and will use the old Thoroughbred core for the Socket A Sempron chips.

Transistor counts on Paris, Victoria, and Palermo are likely off, but it remains to be seen how AMD actually configures these chips. Early Athlon 64 512K cache chips for socket 754 were Clawhammer cores with half the cache disabled, but the newer models (i.e. 3200+ at 2.2 GHz with 512K, 3400+ 2.4 GHz 512K, and 3700+ 2.6 GHz with 512K) appear to be actual Newcastle cores. The same could very well happen with the Paris cores, where initial shipments are "downgraded" Newcastle cores, and later versions may physically remove the ~18.7 million transistors used in the L2 cache. Regardless, values on these cores should be taken with a grain of salt.

Unreleased processors will likely change from these current estimates, and question marks indicate best guess data at present. If you notice any errors or if you have additional information on forthcoming processors, let us know in the comments section or email.

Take note of the Toledo, Denmark, Italy, and Egypt cores; the 2C next to it stands for dual core. All four models use the same basic core and should come out around the same time in early 2005. Whether they launch as planned remains to be seen, and precise details about the internal layout are not yet clear - recent news suggests that each core will have its own L2 cache. Dual core is best described as SMP on a single chip, and while on the subject of SMP, please note that all of the Athlon XP processors could support multi-processor configurations unofficially. 2-way SMP was almost a certainty, but none of the CPUs were verified to function in such a configuration by AMD. While it would not be prudent to take such a risk as a business, quite a few enthusiasts saved themselves a lot of money by putting XP chips into SMP motherboards instead of spending the extra money on MP chips.

The basic core of the Athlon, from the Pluto all the way through the latest Newcastle and Paris processors, changed very little since its inception. It has a 10 stage integer pipeline and 15 stage floating point pipeline, with three identical Arithmetic/Logic Units (ALUs), Address Generation Units (AGUs), and Floating Point Units (FPUs). The FPUs also handle the MMX, 3DNow!/+, and SSE/SSE2 support. Opteron increased the length to 12/17 stages, in addition to bringing 64-bit support. Future versions of the Athlon 64 will likely increase the length of the pipeline past the current 12/17 stages in order to increase clock speeds, but I doubt that AMD will ever show the hubris of Intel by creating a 31 stage pipeline - at least, not on any iteration of the Athlon architecture. This is especially a problem with the increasing power leakage of high clockspeeds and increasingly small process technology. Until those issues are resolved, I think it's safe to say that pipeline lengths will stay in the 10 to 15 stages (for integers) range with AMD.

Update: One reader was good enough to send a link to AMD's site where they actually list the Opteron as being a 12/17 design. (Thanks Tom!) Finding any good details on the Intel and AMD sites can be a major chore, most likely due to the level of competition between the companies as well as their size. There's a rule somewhere that the larger a company gets, the less informative and helpful their web site becomes! For those that want the link, here's the Opteron information. That means that all Athlon 64 designs are also 12/17, of course. The Denmark, Italy, and Egypt CPUs are also dual core, it appears, and their entries have been updated to reflect this. (The old roadmap didn't include that information.)

Index Intel Processors
Comments Locked

74 Comments

View All Comments

  • JarredWalton - Wednesday, September 1, 2004 - link

    Jenand - thanks for the information. There are certainly some errors in the Itanium charts, but very few people seem to know much about the architecture, so I haven't gotten any corrections. Most of the future IA64 chips are highly speculative in terms of featurs.

    Incidentally, it looks like Tukwilla (and Dimona) will be 4 core designs, with motherboards support 4 CPUs, thus "16C" - or something like that. As for Fanwood, I really don't know much about it other than the name and some speculation that it *might* be the same as Madison9M. Or it might be a Dual Processor version of Madison, which is multi-processor.

    http://endian.net/details.asp?ItemNo=3835
    http://www.xbitlabs.com/news/cpu/display/200311101...

    At the very least, Fanwood will have more than just a 9 MB cache configuration, it's probably safe to say.
  • JarredWalton - Wednesday, September 1, 2004 - link

    If Prescott and Pentium M both use the exact same branch predictor, then yes, the Prescott would be more accurate than Banias. However, with the doubling of the cache size on Dothan, I can't imagine Intel would leave it with inferior branch prediction. So perhaps it goes something like this in terms of branch prediction accuracy:

    P6 cores
    Willamette/Northwood
    Banias
    Prescott
    Dothan

    Possibly with the last two on the same level.

    I'm still waiting to see if we can get pipeline stage information from Intel, but I have encountered several other sources online that refer to the Willamette/Northwood as having a 28 stage pipeline. Guess there's no use in beating a dead horse, though - either Intel will pass on information and we can have a definite, or it will remain an unknown. Don't hold your breath on Intel, though. :)
  • IntelUser2000 - Wednesday, September 1, 2004 - link

    "Intel claims that the combination of the loop detector and indirect branch predictor gives Centrino a 20% increase in overall branch prediction accuracy, resulting in a 7% real performance increase."

    Sure, but Prescott also has Pentium M's branch predictor enhancements in addition to the enhancements made to Willamette, while Pentium M didn't get Willamette's enhancements, just the indirect branch predictor.

    Yes it says 20% increase, but from what? PIII, P4? Prescott?
  • jenand - Tuesday, August 31, 2004 - link

    There are a few errors and some missing information on the IPF sheet:
    1) Fanwood will get 4M(?) L3 or so, not 9M. You probably mixed it up with its bigger brother Madison9M, both to be released soon.

    2)Foxton and Pelleston are code names for technologies used in Montecito, not CPU code names.

    3) Dimona and Tukwila are "pairs" (just like Madison/Deerfield, Madison9M/Fanwood and Montecito/Millington) both will be made on 45nm nodes and are scheduled for 2007. Montvale is probably a shrink of Montecito or Millington to the 65nm node and will probably be launched in 2006.

    4) Montecito and Millington will be made on 90nm and use the PAC-611 socket. The FSB of Montecito will be 100MHZ for compatibility reasons, but will also be introduced at a higher FSB (166MHz?) late in 2005.

    5) Fanwood will probably get 100MHz and 133MHz FSB, not 166MHz. Same goes for Millington.

    I hope it was helpful. Please note that I don't have any internal information I only read the rumors.
  • JarredWalton - Tuesday, August 31, 2004 - link

    Heh... one last link. Hannibal discusses why the PM is able to have better branch prediction with a smaller BTB in his article about the PM. At the bottom of the following page is where he specifically discusses the improvements to the P4:

    http://castor.arstechnica.com/cpu/004/pentium-m/pe...

    And his summary: "Intel claims that the combination of the loop detector and indirect branch predictor gives Centrino a 20% increase in overall branch prediction accuracy, resulting in a 7% real performance increase. Of course, the usual caveats apply to these statistics, i.e. the increase in branch prediction accuracy and that increase's effect on real-world performance depends heavily on the type of code being run. Improved branch prediction gives the PM a leg up not only in terms of performance but in terms of power efficiency as well. Because of its improved branch prediction capabilities, the PM wastes less energy speculatively executing code that it will then have to throw away once it learns that it mispredicted a branch."

    He could be wrong, of course, but personally I trust his research on CPUs more than a lot of other sites - after all, he does *all* architectures, not just x86. Hopefully, Intel will provide me (Kristopher) with some direct answers. :)
  • JarredWalton - Tuesday, August 31, 2004 - link

    In case that last wasn't clear, I'm not saying the CPU detection is really that blatant, but if the CPU detection is required for accuracy, it *could* be that bad. Rumor, by the way, puts the Banias core at 14 or 15 stages, and the Dothan *might* add one more stage.
  • JarredWalton - Tuesday, August 31, 2004 - link

    Regarding Pentium M, I believe the difference to the branch prediction isn't merely a matter of size. It has a new indirect branch predictor, as well as some other features. Basically, P-M is designed for power usage first, and so they made a lot more elegant design decisions at times, whereas Northwood and Prescott are more of a brute force approach.

    As for the differences between various AT articles, it's probably worth pointing out that this is the first article I've ever written for Anandtech, so don't be too surprised that it has some differences of opinion. Who's right? It's difficult to say.

    As for the program mentioned in that thread, I downloaded it and ran it on my Athlon 64. You know what the result was? 13.75 to 13.97 cycles. Since a branch miss doesn't actually necessitate a flush of the entire pipeline, that would mean that it's estimating the length of the A64 as probably 15 or 16 stages - off by a factor of 33% or so. If it were off by that same amount on Prescott, that would put Prescott at [drumroll...] 23 stages.

    I've passed on some questions for Intel to Kristopher Kubuki, so maybe we can get the real poop. Until then, it's still a case of "nobody knows for sure". Estimating pipeline lengths based off of a program that reports accurate results on P4 and Northwood cores is at best a guess, I would say.

    Incidentally, I looked at the source code, and while I haven't really studied it extensively, there is a CPU detection, so the mispredict penalty is calculated differently on P4, P6, and *other* architectures. Maybe it's okay, maybe it's not, but if accurate results are dependent on CPU detection, that sort of calls the whole thing into question.

    if CPU=P6 then printf("12 stages.\n")
    else if CPU=P4 then printf("10 stages.\n")
    else if....

    Hopefully, it *is* relatively accurate, but as I said, ~14 cycles mispredict penalty on an Athlon 64 is either incorrect, or AMD actually created a 15 stage pipeline and didn't tell anyone. :)
  • IntelUser2000 - Monday, August 30, 2004 - link

    Okay, I don't know further than that. But one question: Since the old P4 article from Anandtech states 10 stage pipelin P6 core, and Prescott is claimed to have 31 stages and you claim otherwise, it tells that there is individual errors in the SAME site. So whether Hannibal's site can be trusted is doubtful because of that fact too, no? Also, take a look at this link: http://www.realworldtech.com/forums/index.cfm?acti...

    I asked a guy in the forums about it and that link is about the responses to it.

    One example Hannibal's site may be wrong is this: http://arstechnica.com/cpu/004/prescott-future/pre...

    At the end of that link it says: "There's actually another reason why the Pentium M won't benefit as much from hyperthreading. The Pentium M's branch predictor is superior to Prescott's, so the Pentium M is less likely to suffer from instruction-related pipeline stalls than the Prescott. This improved branch prediction, in combination with its shorter pipeline, means improved execution efficiency and less of a need for something like hyperthreading."

    Now, we know Pentium M has shorter pipeline than Prescott but better branch prediction? I really think its wrong, since one of the major improvements of BOTH Prescott and Pentium M in branch prediction is improvements in indirect branch prediction, PLUS, Prescott and Northwood I believe, has bigger BTB buffer size, somewhere in the order of 8x, because Pentium M used indirect branch prediction improvements to save die size and putting more buffer definitely doesn't coincide with that.
  • Fishie - Monday, August 30, 2004 - link

    This is a great summary of the processor cores. I would like to see the same thing done with video cards.
  • JarredWalton - Monday, August 30, 2004 - link

    #49 - Did you even read the links in post #44? Did you read post #44? Let's make it clear: the Willamette and Northwood cores were 20 stage pipelines coupled to an 8 stage prefetch/decode unit (which feeds into the trace cache). This much, we know for sure. The Prescott core appears to be 23 stages with the same (essentially) 8 stage prefetch/decode unit. So, you can call early P4 cores 20 stages, in which case Prescott is 23 stages, or you can call Prescott 31 stages, in which case early P4 cores were 28 stages.

    If you look at the chart in the link to Anandtech, notice how the P4 pipeline is lacking in fetch and decode stages? Anyway, there's nothing that says the AT chart you linked from Aug 2000 is the DEFINITIVE chart. People do make errors, and Intel hasn't been super forthcoming about their pipelines. I'll give you a direct link to where Hannibal talks about the P6 and P4 pipelines - take it up with him if you must:

    http://arstechnica.com/cpu/004/pentium-1/pentium-1...

    Synopsis: In the AT picture, the P6 pipeline has 2 fetch and 2 decode stages, while Hannibal describes it as 3.5 BTB/Fetch stages and 2.5 Decode stages.

    http://arstechnica.com/cpu/01q2/p4andg4e/p4andg4e-...

    Here, the P4 and G4e architectures are compared, but if you read this page, it explains the trace cache and how it effects things. Specifically: "Only when there's an L1 cache miss does that top part of the front end kick in in order to fetch and decode instructions from the L2 cache. The decoding and translating steps that are necessitated by a trace cache miss add another eight pipeline stages onto the beginning of the P4's pipeline, so you can see that the trace cache saves quite a few cycles over the course of a program's execution."
    -----------------------
    Further reading:

    http://episteme.arstechnica.com/eve/ubb.x?a=tpc&am...

    The comments in the "Discuss" section of the article contain further elaboration by Hannibal on the Prescott: "The 31 stages came from the fact that if you include the trace cache in the pipeline (which Intel normally doesn't and I didn't here) then the P4's pipeline isn't 20 stages but 28 (at least I think that's the number). So if you add three extra stages to 28 you get 31 total stages."

    The problem is, Intel simply isn't coming out and directly stating what the facts are. It *could* be that Prescott is really 31 stages (as Intel has said) plus another 8 to 10 stages of fetch/decode logic, putting the "total" length at 39 to 41 stages. However, given the clockspeed scaling - rather, the lack thereof - it would not be surprising to have it "only" be 23 stages plus 8 fetch/decode stages. After all, the die shrink to 90 nm should have been able to push the Northwood core to at least 4 GHz, which seems to be what the Prescott is hitting as well.

    Unless you actually work for Intel and can provide a definitive answer? I, personally, would love some charts from Intel documenting all of the stages of both the initial NetBurst pipeline as well as the Prescott pipeline. (Maybe I should mention this to Anand...?)

Log in

Don't have an account? Sign up now