Why In-Order?

Ever since the Pentium Pro, desktop PC microprocessors have implemented Out of Order (OoO) execution architectures in order to improve performance.  We’ve explained the idea in great detail before, but the idea is that an Out-of-Order microprocessor can reorganize its instruction stream in order to best utilize its execution resources.  Despite the simplicity of its explanation, implementing support for OoO dramatically increases the complexity of a microprocessor, as well as drives up power consumption. 

In a perfect world, you could group a bunch of OoO cores on a single die and offer both excellent single threaded performance, as well as great multi-threaded performance.  However, the world isn’t so perfect, and there are limitations to how big a processor’s die can be.  Intel and AMD can only fit two of their OoO cores on a 90nm die, yet the Xbox 360 and PlayStation 3 targeted 3 and 9 cores, respectively, on a 90nm die; clearly something has to give, and that something happened to be the complexity of each individual core. 

Given a game console’s 5 year expected lifespan, the decision was made (by both MS and Sony) to favor a multi-core platform over a faster single-core CPU in order to remain competitive towards the latter half of the consoles’ lifetime. 

So with the Xbox 360 Microsoft used three fairly simple IBM PowerPC cores, while Sony has the much publicized Cell processor in their PlayStation 3.  Both will perform absolutely much slower than even mainstream desktop processors in single threaded game code, but the majority of games these days are far more GPU bound than CPU bound, so the performance decrease isn’t a huge deal.  In the long run, with a bit of optimization and running multi-threaded game engines, these collections of simple in-order cores should be able to put out some fairly good performance. 

Does In-Order Matter?

As we discussed in our Cell article, in-order execution makes a lot of sense for the SPEs.  With in-order execution as well as a small amount of high speed local memory, memory access becomes quite predictable and code is very easily scheduled by the compiler for the SPEs.  However, for the PPE in Cell, and the PowerPC cores in Xenon, the in-order approach doesn’t necessarily make a whole lot of sense.  You don’t have the advantage of a cacheless architecture, even though you do have the ability to force certain items to remain untouched by the cache.  More than anything having an in-order general purpose core just works to simplify the core, at the expense of depending quite a bit on the compiler, and the programmer, to optimize performance. 

Very little of modern day games is written in assembly, most of it is written in a high level language like C or C++ and the compiler does the dirty work of optimizing the code and translating it into low level assembly.  Compilers are horrendously difficult to write; getting a compiler to work is a pretty difficult job in itself, but getting one to work well, regardless of what the input code is, is nearly impossible. 

However, with a properly designed ISA and a good compiler, having an in-order core to work on is not the end of the world.  The performance you lose by not being able to extract the last bit of instruction level parallelism is made up by the fact that you can execute far more threads per clock thanks to the simplicity of the in-order cores allowing more to be packed on a die.  Unfortunately, as we’ve already discussed, on day one that’s not going to be much of an advantage. 

The Cell processor’s SPEs are even more of a challenge, as they are more specialized hardware only suitable to executing certain types of code.  Keeping in mind that the SPEs are not well suited to running branch heavy code, loop unrolling will do a lot to improve performance as it can significantly reduce the number of branches that must be executed.  In order to squeeze the absolute maximum amount of performance out of the SPEs, developers may be forced to hand code some routines as initial performance numbers for optimized, compiled SPE code appear to be far less than their peak throughput. 

While the move to in-order architectures won’t cause game developers too much pain with good compilers at their disposal, the move to multi-threaded game development and optimizing for the Cell in general will be much more challenging. 

Xenon vs. Cell How Many Threads?
Comments Locked

93 Comments

View All Comments

  • Doormat - Friday, June 24, 2005 - link

    @#22: Yes 1080P is an OFFICIAL ATSC spec. There are 18 different video formats in the ATSC specification. 1080/60P is one of them.

    FWIW, Even the first 1080P TVs coming out this year will *NOT* support 1080P in over HDMI. Why? I dunno. The TVs will upscale everything to 1080P (from 1080i, 720p, etc), but they cant accept input as 1080P. Some TVs will be able to do it over VGA (the Samsung HLR-xx68/78/88s will), but still thats not the highest quality input.
  • Pastuch - Friday, June 24, 2005 - link

    RE: 1080P
    "We do think it was a mistake for Microsoft not to support 1080p, even if only supported by a handful of games/developers."

    I couldnt disagree more. At the current rate of HDTV adoption we'll be lucky if half of the Xbox 360 users have 1280x720 displays by 2010. Think about how long it took for us to get passed 480i. Average Joe doesnt like to buy new TVs very often. Unless 1080P HDTVs drop to $400 or less no one will buy them for a console. We the eger geeks of Anandtech will obviously have 42 widescreen 1080P displays but we are far from the Average Joe.

    RE: Adult Gamers

    Anyone who thinks games are for kids needs a wakeup call. The largest player base of gamers is around 25 years old right now. By 2010 we will be daddys looking for our next source of interactive porn. I see mature sexually oriented gaming taking off around that time. I honestly believe that videogames will have the popularity of television in the next 20 years. I know a ton of people that dont have cable TV but they do have cable internet, a PC, xbox, PS2 and about a million games for each device.
  • Pannenkoek - Friday, June 24, 2005 - link

    #19 fitten: That's the whole point, people pretend that even rotten fruit laying on the ground is "hard" to pick up. It's not simply about restructuring algorithms to accomodate massive parallelism, but also how it will take ages and how no current game could be patched to run multithreaded on a mere dual core system.

    Taking advantage of parallism is a hot topic in computer science as far as I can tell and there are undoubtedly many interesting challanges involved. But that's no excuse for not being able to simply multithread a simple application.

    And before people cry that game engines are comparable to rocket science (pointing to John Carmack's endeavours) and are the bleeding edge technology in software, I'll say that's simply not the reality, and even less an excuse to not be able to take advantage of parallelism.

    Indeed, game developers are not making that excuse and will come with multithreaded games once we have enough dual core processors and when their new games stop being videocard limited. Only Anandtech thinks that multithreading is a serious technical hurdle.

    This and those bloody obnoxious "sponsored links" all through the text of articles are the only serious objections I have towards Anandtech.
  • jotch - Friday, June 24, 2005 - link

    #26 - yeah i know that happens all over but I was just commenting on the fact that the console's market is mainly teens and adults not mainly kids.
  • expletive - Friday, June 24, 2005 - link

    "If you’re wondering whether or not there is a tangible image quality difference between 1080p and 720p, think about it this way - 1920 x 1080 looks better on a monitor than 1280 x 720, now imagine that blown up to a 36 - 60” HDTV - the difference will be noticeable. "

    This statement should be further qualified. There is only a tangible benefit to 1080p if the display device is native 1080p resolution. Otherwise, the display itself will scale the image down to its native resolution (i.e. 720p for most DLP televisions). If youre display is native 720p then youre better off outputting 720p becuase all that extra processing is being wasted.

    There are only a handful of TVs that support native 1080p right now and they are all over $5k.

    These points are really important when discussing the real-world applications of 1080p for a game console. The people using this type of device (a $300 game console) are very different then those that go out and buy 7800GTX cards the first week they are released. Based on my reading in the home theater space, less than 10% of the people that own a PS3 will be able to display 1080p natively during its lifecycle (5 years).

    Also, can someone explain how the Xenos unified shaders was distelled from 48 down to 24 in this article? That didnt quite make sense to me...

    John
  • nserra - Friday, June 24, 2005 - link

    I was on the supermarket, and there was a kid (12year old girl) buying the game that you mention with the daddy that know sh*t about games, and about looking for the 18 year old logo.

    Maybe if they put a pen*s on the box instead of the carton girl, some dads will then know the difference between a game for 8 year old and an 18.

    #21 I don’t know about your country, but this is what happen in mine and not only with games.
  • knitecrow - Friday, June 24, 2005 - link

    would you be able to tell the difference at Standard resolution?

    instead of drawing more pixels on the screen, the revolution can use that processing power and/or die space for other functions... e.g. shaders

    If the revolution opts to pick an out-of-order processor, something like PPC970FX, i don't see why i can't be competitive.


    But seriously, all speculation aside, the small form factor limits the ammount of heat components can put out, and the processing power of the system.
  • perseus3d - Friday, June 24, 2005 - link

    --"Sony appears to have the most forward-looking set of outputs on the PlayStation 3, featuring two HDMI video outputs. There is no explicit support for DVI, but creating a HDMI-to-DVI adapter isn’t too hard to do. Microsoft has unfortunately only committed to offering component or VGA outputs for HD resolutions."--

    Does that mean, as it stands now, the PS3 will require an adapter to be played on an LCD Monitor, and the X360 won't be able to be used with an LCD Monitor with DVI?
  • Dukemaster - Friday, June 24, 2005 - link

    At least we know Nintendo's Revolution is the lozer when it comes to pure power.
  • freebst - Friday, June 24, 2005 - link

    I just wanted to remind everyone that 1080P at 60 Frames isn't even an approved ATSC Signal. 1080P at 30 and 24 frames is, but not 60. 1280x720 can run at 60, 30, and 24 that is unless you are running at 50 or 25 frames/sec in Europe.

Log in

Don't have an account? Sign up now