Introduction

Note: This article is an in-depth look at overclocking. We'll cover how to do it, what sort of performance you can achieve, problems and potential solutions, etc. Overclocking can be frustrating, rewarding, fun, and dangerous. We don't mean "burn the house down" dangerous, but you could certainly end up ruining some or all of your computer components. We take no responsibility for any difficulties or losses you may experience by using the information in this article, and we certainly take no responsibility for any damage that may occur to any person, place, or object. The manufacturers of the parts that we are using are also not accountable for any loss/damage that may occur - most companies void your warranty for overclocking. It's a risk, and it's your risk - proceed with caution. Finally, overclocking is never a "guaranteed result". You may or may not match the results that we achieve. We'll be happy to offer suggestions if you need them, as will many of our forum members. Patience and research are part of overclocking as well, so please understand that you may have to do some work on your own. If you can accept those warnings, we hope that you enjoy this article.

Back in the day, overclocking was in some ways simpler than what we see now. You would typically buy a mid-range processor and then try to increase the bus speeds as much as possible in order to get the most performance out of your system. Older Pentium chips also allowed you to change the multiplier, so with some luck, you might get your 2.5X multiplier on a Pentium 166 up to 3.0X, resulting in a 33 MHz overclock. Other than a few special chips like the Pentium M and Athlon FX, increasing multipliers is no longer possible. The modification of bus speeds can still be used, but it isn't necessarily the best or only way to try to overclock your system. We have mentioned overclocking performance in many articles, but we haven't taken the time to really explore all the options out there. We also know that current Intel and AMD setups have very different options and performance when overclocking is used, so we want to look at that as well.

Before we branch out into AMD vs. Intel comparisons, however, let's talk about the past top performers. The Celeron 300A is fondly remembered by many people, and with good reason. Yes, we have had some other good parts in the intervening years, like the 2.4 GHz Northwood cores, the low end Prescott cores, and the Athlon XP-M Barton parts. However, when you look at the 50% overclock of the Celeron 300A (and it wasn't just possible, it was common), none of the other parts have really ever approached that level of overclocking without some serious investment in cooling options. (Some people even managed to get the 300A to 504 MHz - an amazing 68% overclock!) Northwood's 2.4 GHz to 3.2 GHz is still an impressive 33% overclock. The 2.4 GHz to 3.6 GHz Prescott overclock (using the 2.4A) actually matches the 50% of the 300A, but you sacrifice some features (HyperThreading and high FSB speeds) with the lower model parts. Meanwhile, the overclocking darling that was the XP-M 2500+ "only" managed a typical overclock of 1.87 GHz to 2.4 GHz, a 29% overclock.

That brings us to the part that we're investigating today. It is arguably the best overclocking platform since the old Celeron 300A: AMD's Venice core. One thing that we didn't mention above is the role that price plays for many overclockers. Sure, the Athlon-FX can reach clock speeds and performance that most other chips only dream about, but at a cost of roughly $900 just for the processor, a lot of people will only read about it. What made the 300A so attractive was that it was not only a monster overclocking chip, but it cost around $150 and competed with $500 chips. That's why the 2.4C and 2.4A Pentium 4 are also well regarded; they cost under $200 and could compete with chips that cost two to three times as much. The price of entry for the cheapest Venice core (the 3000+) is once again very low; $120 for the OEM model, or $145 for the retail version.

We'll get into the details more in a moment, but for now, we'll just say that the 3200+ may actually be a better choice, and that's what we are using for this article. We are also using the retail model, and some people will say that retail parts tend to overclock better than the OEM chips. We'll simulate 3000+ overclocking using a 9X CPU multiplier, but that may or may not be an entirely accurate representation of 3000+ overclocking performance. In general, though, what we're hearing is that almost all of the Venice cores can run at very high clock speeds with a bit of effort, so there isn't a huge difference between 3000+ parts binned for 1.8 GHz and 3800+ parts binned for 2.4 GHz. AMD has simply set the package to use a maximum 9X multiplier on the former and a 12X multiplier on the latter. Talking about CPU multipliers leads us into the real meat of the discussion, though, so let's get into it.

The Overclocking Platform
Comments Locked

101 Comments

View All Comments

  • Deathcharge - Saturday, October 15, 2005 - link

    also what do you think of opteron 144 or 146? the 144 are very cheap and they OC quite well apprently
  • pmorcos - Thursday, October 13, 2005 - link

    Before I comment, you should know that I have been overclocking for 8 years now and literally overclocked all but one of the chips you mentioned in the beginning of this very good article. The HT multiplier was new to me with my most recent DFI NF4-SLI-DR board so I found that extremely useful and plan to see if I can up my speeds...but I digress.

    I think it would be extremely valuable to TRY to put in words the order with which an overclocker should approach making changes to settings. In other words, which is likely to be the most limiting/critical aspect(s) and from there tweak the others to max the system out.
    It would be interesting to say, for example, that you start with a "safe" power settings (which is pretty obviously the limiting factor). For example, let's say your CPU and memory are rated at 1.3 and 2.8 V respectively. Why not go straight to "safe" settings for the two and tweak from there? It seems that the most useful piece of information that is NOT provided by anandtech or anyone else for that matter is a voltage and temp graph of stability/viability for these chips. It would be simple to take 3 samples (at a cost) of each chip and run the test with "average" cooling and find out what is "safe". For example if running all stock settings but upping voltages to say 2.4/3.6 V in the example above, you might see stability up to 1.65 / 3.1 V with the parts catching fire at say 1.8/3.3 V or stable at temp readings for cpu/memory of 44/47C but unstable above that. Once armed with these two graphs of information averaged from 3 chips tested the rest is very straight forward.

    You simply set the cpu volts to 1.65 and memory to 3.1 V (the safe settings; check real voltages vis bios monitoring) and now you up your fsb and tweak your memory timings and in a few minutes you are running max.

    Why do I think this is more valuable that showing us a graph of your results? Because like many I'm squeemish about upping the voltage on my processor and memory. I'm worried much more about the power-on affects than I am the "long-term" effects.
    In computers, there are no long-terms for an overclocker. An overclocker's comp is 60% hardware and 40% software. Their greatest joy is in posting results on their favorite forum. I want to know that when I hit the power button...that the 1.7V setting does NOT have a 10% chance of blowing my processor.
    My ramblings. Thanks again for another great article from by far the VERY BEST place in the world to find out how computer parts work.
  • JarredWalton - Thursday, October 13, 2005 - link

    Thanks pmorcos.

    I'm working on the X2 3800+ OC followup, and I've gone back and done further testing of temperatures and voltages. Chips differ, so the real advice I have on that subject is to test your own chip extensively. I've heard of people doing 2.8 GHz on 1.500V with the Venice chips, but mine won't even POST at those settings. I think 1.65 or 1.70V was required to POST, and even then I couldn't run stable benchmarks without more voltage.

    I will also be trying to cover a bit more of the "how to" process in the next one. Consider this the foundation, and the next article will refine the approach a bit. Your comments on what you'd like to see more of are definitely welcome, though, and I'll try to address the order and approach I take next.

    Concerning another comment: "I want to know that when I hit the power button...that the 1.7V setting does NOT have a 10% chance of blowing my processor." I'm not quite sure I understand the concern or know how to test that. Are you saying that the power on process has more voltage fluctuations and may therefore toast the CPU in the first second? (I haven't had that happen over the past several months of testing this chip and others in overclocked setups.) I must admit that I'm extremely nervous about the 1.850V I used for running at 2.80 GHz, but even then the chip continued to function (for now - heheh).

    Cheers!
    Jarred Walton
  • WhipperSnapper - Thursday, October 13, 2005 - link


    That was one of the best computer enthusiast website articles that I've read in a long time, but perhaps I don't get around too much. I'd like to hear more about the problems that spilled over to other components, such as the SATA hard drive (mentioned in the Final Thoughts) and whether or not the overclocking can be isolated to the CPU and RAM. I also wondered if there was a reason why you guys used a SATA hard drive and not an IDE drive and whether overclocking requires a SATA hard drive. (I don't see why it would.)

    Also, have you guys tried to do any tests using memory stick heatsinks? Do they actually do anything? That subject might make for a worthwhile article on its own--RAM cooling.
  • aptinio - Saturday, October 8, 2005 - link

    bravo! great article. very informative but not too bloated. can't wait to finally upgrade my amd k6-II with 1mb l3 cache on the motherboard! lol!
  • Kougar7 - Thursday, October 6, 2005 - link

    Thank you for the excellent, comprehensive, and very thorough article! :-) It must have taken a massive amount of work and time to complete. It’s answered my recent musings about my own Crucial value ram, which looks much nicer now! It’s also solved a question about OCing with recent AMD 64 chips, amongst also correcting a few personal misconceptions I’ve had.

    I just wish to ask if you plan to include a similar article on OCing with P4s? I personally run a 2.8C (Northwood) @ 3.4 rock solid at the 3.4C’s default voltage, but am now wondering exactly what performance hits, if any, that I’ve taken from having to use a 5:4 CPU:DRAM ratio instead of the previous 1:1, even though I’ve kept it at DDR390 and the timings better than specs.

    I’m planning to bench the differences from a 1:1 ratio, a 3:2 ratio at highest speed I can get (sub-DDR333), my current setup, and finally one other setting where I got the value memory to run 2-2-2-6 timings, to get a more solid idea on which performs best with some solid figures.

    Although the core and the platform itself both have both changed, I’d still be interested in a Intel processor based test! Perhaps instead of a P4, maybe a Pentium “D” OCing article similar to what you have planned with the X2 3800+? ;-)

    I’m very much looking forward to your X2 3800+ OCing review!! You rock :-D Thanks in advance for it!
  • JarredWalton - Thursday, October 6, 2005 - link

    I'm trying to get a socket 775 motherboard that will overclock well with Pentium D 820. Once I get that, I can give it a go. I've also got a Pentium 4 505 and a 540 that I want to run some similar tests on. First, though, I need an appropriate motherboard.
  • clue22 - Thursday, October 6, 2005 - link

    so basically what the everybody is saying about the value RAM vs. low latency more expensive RAM is that for the athlon 64 it is basically a waste of money (i.e. you only get about 5% performance gain), but usually spend 100% or more money to get the "better" RAM. i have to build a couple of systems pretty soon and now i believe that my money would be better spent on 2GB of value RAM vs. 1GB of the more expensive stuff. does anyone know of a test that has been run with 2.5-3-3-8-1t vs. 2-2-2-5-1t? also why does every mid-range/gaming/hot-rod price guide ever recommend the either the samsung tccd (or tcc5) or winbond bh5/ch5 based memory if it has so little effect on performance. finally is it even important anymore (if it ever was) to get matched pairs of memory that are bundled together (supposedly manufactured at the same time)? i was looking at some corsair (had good experience with them in the past) xms3200xl RAM but now i think i should get more of their value select memory instead.

    thanks
  • RupertS - Wednesday, October 26, 2005 - link

    so basically what the everybody is saying about the value RAM vs. low latency more expensive RAM is that for the athlon 64 it is basically a waste of money

    This may not be a general rule.

    It may just be that at this stage of development for GPU's, CPU's and memory, memory has more than enough capacity - it is not the choke point. If GPU and CPU speed were to improve while memory speed stayed the same, you might reach the point where increasing GPU and CPU speed was non-productive for games, while overclocking memory provided large performance improvements.
  • rabbit fighter - Wednesday, October 5, 2005 - link

    Where was this explained? He said the 3200 was better in the first paragraph and that he would explain later, but I can't find the later explanation!

Log in

Don't have an account? Sign up now