DFI nF4 Infinity

We wanted to spend a few minutes looking at the motherboard options before continuing - a mini review if you will, as we haven't officially reviewed this board and we want to compare it to the LANPARTY UT nF4 Ultra-D. We're using the DFI NF4 INFINITY, but it is actually just the new name for the DFI NF4-DAGF. There are multiple models of the INFINITY/DAGF, using everything from the base nForce4 4X chipset to the top nForce4 Ultra and SLI. We're using the "middle" model, the nForce4 Standard. The main difference is that all the networking features of the chipset are enabled and official support for 1000 MHz HyperTransport is also present. The only extra that the Ultra offers is SATA-II (3 Gbps) hard drive support, while the 4X limits the HT bus to 800 MHz. SLI adds dual PEG slots to the mix, of course. We heard directly from DFI that the DAGF was being renamed to "INFINITY", but if you still think that there's a difference, we offer these two shots obtained from Newegg and TigerDirect.


TigerDirect lists the board as the INFINITY while Newegg uses the older DAGF moniker. We've resized the images for comparison, with TigerDirect on the left and Newegg on the right. Other than a slight difference in contrast levels and viewing angle, we can't spot any changes. Besides, we're inclined to take DFI at their word. Here's a better shot of our particular board.


Click to enlarge.

The layout is generally good, if not great. The 4-pin ATX12V connector is about the only minor concern, as it's between the RAM and CPU socket. The cable will need to be snaked over the CPU heat sink, but it shouldn't present any real problems. IDE, floppy, SATA, and 24-pin ATX power are all located in the preferred board edge locations. The location of the extra Firewire port is a bit odd, so if you plan to use that for a front case port, you'll need to do some creative routing of the cable. The RAM slots are configured such that channel A is slots 1 and 3 while channel B is slots 2 and 4. What that means is that with two DIMMs installed in dual channel operation, there is very little room between the DIMMs. We prefer channel A to be slots 1 and 2 with B being 3 and 4, as the majority of people will run only two DIMMs, and a bit of extra breathing room isn't a bad idea. Everything else looks fine, with enough clearance around the CPU socket for most HSFs, and room between the PEG slot and the NB HSF.

Unlike the LanParty series, the Infinity is pretty boring in terms of looks. A standard brownish PCB with no UV reactive parts isn't the best fit for a windowed case, but if you're like me and don't care for case windows, it doesn't really matter. Also missing relative to the LanParty are the rounded cables and onboard power and reset buttons. Those buttons can be handy for testing outside of a case. (Of course, if you're adventurous, you can always just use a small metal item to short the required pins to accomplish the same result - don't blame us if you fry your system that way, though!) One complaint that we did have was with the X16 PEG retention mechanism. Many boards have a clip that locks the rear of the graphics card into place, but the Infinity has a sort of "hook" design. It works okay for holding the GPU in the slot, but removing the GPU can be a bit more difficult than what we'd like. We'd also prefer a larger heat sink on the Northbridge, perhaps with passive cooling. The NB did get quite warm at the highest overclocks, and there looks to be plenty of room to move it up closer to the CPU socket. The small fan did make a bit of noise, though "silent" and "overclocking" rarely go together.

DFI nF4 Infinity Specifications
CPU Interface Socket 939 Athlon 64
Chipset nForce4 Standard (single chip)
BUS Speeds 200MHz to 450MHz (in 1MHz increments)
PCI/AGP Speeds Asynchronous (Fixed)
PCI Express 100MHz to 145MHz in 1MHz increments
CPU Voltage Auto, 0.800V to 1.850V in 0.025V increments
DRAM Voltage 2.5V to 3.2V in 0.1V increments
Chipset Voltage 1.5V, 1.6V, 1.7V
Hyper Transport Ratios Auto, 1.0, 2.0, 3.0, 4.0, 5.0
LDT Bus Transfer 16/16, 16/8, 8/16, 8/8
CPU Ratios Auto, 4x to 25x in .5x increments
DRAM Speeds Auto, 100, 133, 150, 166, 200
Memory Command Rate Auto, 1T, 2T
Memory Slots Four 184-pin DDR Dual-Channel Slots
Unbuffered ECC or non-ECC Memory to 4GB Total
Expansion Slots 1 X16 PCIe Slots
2 X1 PCIe
3 PCI Slots
Onboard SATA 4-Drive SATA by nF4
Onboard IDE Two Standard NVIDIA ATA133/100/66 (4 drives)
SATA/IDE RAID 4-Drive SATA plus
4-Drive IDE (8 total)
Can be combined in RAID 0, 1
Onboard USB 2.0/IEEE-1394 10 USB 2.0 ports supported nF4
2 1394A FireWire ports by VIA VT6307
Onboard LAN Gigabit Ethernet
PCIe by Vitesse VSC8201 PHY
Onboard Audio Realtek ALC655 6-Channel codec
3 UAJ audio jacks
CD-in, front audio, and coaxial SPDIF In and Out
BIOS Award 8/11/2005 Release, CK84D811

The feature list of the board is very similar to the LanParty boards. The BIOS offers very good tweaking options, but voltages are slightly more limited than the higher-end boards. 3.2V maximum on the RAM is plenty for most people, but it did prove limiting on some OCZ VX Gold that we tried, reaching a maximum of 2-3-3-8-1T timings at DDR500. (That RAM was not used during testing for this particular article, so we mention it merely as a point of interest.) The CPU voltage topped out a 1.85V, which is a lot higher than the default voltage of most 90nm AMD chips. We're a little uncomfortable pushing our CPUs even to that level, though with water cooling or something more exotic, a higher voltage level might prove useful.

Overall, we're very impressed with this value offering from DFI. They basically stripped away the flash and the frills and knocked around $20 off the price of the LanParty UT nF4 Ultra-D. The question is: do you really want to save the $20? Modders can try turning the Ultra-D board into an SLI model, and the rounded cables and UT reactive design may appeal to some. On the other hand, the Infinity SLI guarantees SLI capability and costs about the same amount as the Ultra-D. If you want to push overclocking a little further, the LanParty boards (and competitors) might be a bit better. If you're trying to stick to a budget without cutting necessary features, the Infinity line keeps you covered.

Having selected the processor and motherboard, we're still only half way through our critical component choices. Hard drives, floppy drives, optical drives, and even graphics cards have little to no impact on overclocking, so you can get whatever you want in those areas. We'd question the purchase of a low end graphics card with such a system, unless there's a specific desire to have a fast processor for video/audio encoding. That sort of work is often for a real job, though, and we're hesitant to suggest that anyone overclock a system that is being used for important work. If a gaming PC crashes and somehow corrupts your entire hard drive, you reformat and reinstall. A work PC going through the same problems would be a lot more painful. We've already given our warnings about overclocking, however, so do what you will. What remains, then, are the last three components that will generally have an impact on your overclocking endeavors.

The Overclocking Platform Memory Options
Comments Locked

101 Comments

View All Comments

  • JarredWalton - Wednesday, October 5, 2005 - link

    Sorry if I missed this in the article. The reason a 3200+ may be better is the 10X multiplier vs. 9X. Sure, the DFI board used worked pretty well at either setting, but there are many boards that won't handle much above 250 MHz CPU bus stably. Needless to say, there's a reason 2800 MHz was only included at one setting. While it still wasn't stable, it would actually run most benchmarks at 10x280. 9x311 wouldn't even load Windows half the time. The extra $50 for added flexibility is also nice: you can try 9x300, 10x270, PC3200, PC2700, etc. to find the most stable, highest performing option.
  • Bakwetu - Wednesday, October 5, 2005 - link

    Thanks for a great article. I haven't been following the development so carefully since I upgraded last time (with one of the last unlocked Barton 2500+), so this article was a most welcome refresher for me, as I will probably get a x2 3800 rig in the near future.

    Last time I checked using the naked fingertip to smear out the paste was a big no-no. I have always used either a washed razorblade or fingertip in a clean plastic bag. The Arctic silver once sold without silver was a faked, copied product as far as I know. The real stuff in its many forms over the years has definitely shown that it is a good product.
  • javalino - Wednesday, October 5, 2005 - link

    Frist , great article, Jarred.
    Second, i m an anand fan since i remember (1999-2000).
    Third, Since yours conclusion focus on a dilema about overclock, why spend to much in an overclock symtem(or on a powerfull system) if you target is at games ? (wich is a GPU limited). An 125 bucks , like you said, will be more usefull in a video card.
    My idea is an article, about "Benefits, Costs, and Lessons Learned" about build a system for games. How much will be a performance gain from systems running high end cards ,at high resoltion and configurations ( like 1600 x 1200, and with an extra 4xAA 16XAF), with differents system . A FX VS 64(overclock) VS P4 (over) VS P-M VS AMD XP (over of course), for example. The conclusion will be, how much is "needed" to pay for a decent game machine wich is possible to play all current games(and maybe future) with great image quality and performance.

    Maybe the answer is obvious, go with the best FPS/price option possible, or maybe not.
  • AtaStrumf - Tuesday, October 4, 2005 - link

    Great article Jarred!!! I really like your choice of value parts and how you criticaly assesed the results based on the bang-for-the-buck. And finally you did away with pages and pages of bar charts, and combined them into line-scaling charts. How long have I been asking for something like that??? Now we can finally see the REAL difference (or lack of it), and analyse results properly, without having to go back and forth between tens of bar charts. Tell Anand to upgrade your graphing engine ASAP.

    I am a little worried about those voltages though. This sure looks like a bad chip to me (OC wise). WAY too high voltages. I would not go over 1,45 - 1,50 V or else you risk screwing up the chip. You see the memory controller on the chip doesn't like too high voltages and though it will still work, the chip will get slower eventually. Hard to explain really but I know my new 2,2 GHz A64 is faster and much cooler than my old 2,4 GHz A64 (same core - Newcastle, same cooer, same RPM, same case, same ...), which I bought from some crazy overclocker (last time BTW). The 2,4 GHz one gave me really shitty results in FAH for weeks. That's the only explanation a have so far anyway. Maybe you can do an investigaion into this -- burn in one A64 Venice at say 1,6V 24/7 for a few weeks and let's see what happens. I just don't have the $$$ and time to take the risk. I'd be very happy to hear from other forum members on this as well.

    Anyway, glad to see at least part of AT is back to the high quality standards we were used to.
  • AtaStrumf - Tuesday, October 4, 2005 - link

    Or maybe it's the SOI process that is to blame for not taking high voltages too kindly, or maybe both, don't know yet, but I would definitely advice caution goint over 1,5V (default for 0,13 mikron SOI chips). Just think about it, that's already a 15% increase. +10% is usualy max that is still considered safe.

    You just posted that this chip seems to have changed it's behavior (better OC). That may have something to do with the high voltages and it may not be all good. I'd suggest testing it again in a few benchmarks and comparing the results.
  • JarredWalton - Wednesday, October 5, 2005 - link

    Working on it. I think I ended up benching at 1.850V for the 10x280 setting and then not dropping voltages as much as I was supposed to. I'm a little skeptical that a CPU would get slower, though. Usually, they work or they fail. We'll see.

    My thought on the "safe limit" though: what voltage does the FX-57 run at? Whatever it is, at 10 to 15% to that and you're probably still okay. Good cooling will also help; on the stock HSF, I'd be a lot more nervous going over 1.550V.
  • OvErHeAtInG - Tuesday, October 4, 2005 - link

    Very useful article - thorough yet concise. And I would like to toss in another request: Add to the test a ULi-based motherboard (such as the recently reviewed ASRock 939Dual-SATA2). How do these Venices overclock when you can only feed them +.05v? As I recall the standard AT Clawhammer was used in that review.

    That would be hugely useful to a lot of us wanting to transition to A64. While the thing to do is probably just get a DFI or other top-end oc'er, what to do for those of us who are not yet ready to upgrade GPUs? On second thought: you could simulate the ASRock motherboard by simply setting the Venices to the lower voltage, on the DFI board, and testing for the max overclock on that. I think that would vary quite a bit from chip to chip, but just to get an idea - how much of a disadvantage is being limited in your voltage? Food for thought.
  • JarredWalton - Tuesday, October 4, 2005 - link

    I played around with voltages a bit more last night. It seems like I can hit about 2.40 GHz with only increasing the CPU voltage to 1.40V, though I didn't run all of the benchmarks to fully test that config. I'm not sure if the CPU has changed behavior over the past month, or if I was just too liberal with the voltages initially.

    For the ASRock, that Wes managed to get a 500 MHz OC even with the minimal voltage adjustments is promising. Truth be told, the DFI Infinity seems to undervolt the CPU slightly, so 1.500V actually shows up as closer to 1.455V. If the ASRock is exact with the voltages, or even a bit high, I think a 2.4+ GHz overclock is a reasonably safe bet.
  • OvErHeAtInG - Wednesday, October 5, 2005 - link

    Thanks for the info, Jarred. I'm sure there's a thread on this somewhere.... :)
  • araczynski - Tuesday, October 4, 2005 - link

    i haven't seen a better argument for not wasting money on the 'better' memory in ages.

    with those kinds of 'gains' i congratulate the companies for milking everyone with their markups for the 'higher end' components.

Log in

Don't have an account? Sign up now