Investigations into Socket 939 Athlon 64 Overclocking
by Jarred Walton on October 3, 2005 4:35 PM EST- Posted in
- CPUs
DFI nF4 Infinity
We wanted to spend a few minutes looking at the motherboard options before continuing - a mini review if you will, as we haven't officially reviewed this board and we want to compare it to the LANPARTY UT nF4 Ultra-D. We're using the DFI NF4 INFINITY, but it is actually just the new name for the DFI NF4-DAGF. There are multiple models of the INFINITY/DAGF, using everything from the base nForce4 4X chipset to the top nForce4 Ultra and SLI. We're using the "middle" model, the nForce4 Standard. The main difference is that all the networking features of the chipset are enabled and official support for 1000 MHz HyperTransport is also present. The only extra that the Ultra offers is SATA-II (3 Gbps) hard drive support, while the 4X limits the HT bus to 800 MHz. SLI adds dual PEG slots to the mix, of course. We heard directly from DFI that the DAGF was being renamed to "INFINITY", but if you still think that there's a difference, we offer these two shots obtained from Newegg and TigerDirect.
TigerDirect lists the board as the INFINITY while Newegg uses the older DAGF moniker. We've resized the images for comparison, with TigerDirect on the left and Newegg on the right. Other than a slight difference in contrast levels and viewing angle, we can't spot any changes. Besides, we're inclined to take DFI at their word. Here's a better shot of our particular board.
The layout is generally good, if not great. The 4-pin ATX12V connector is about the only minor concern, as it's between the RAM and CPU socket. The cable will need to be snaked over the CPU heat sink, but it shouldn't present any real problems. IDE, floppy, SATA, and 24-pin ATX power are all located in the preferred board edge locations. The location of the extra Firewire port is a bit odd, so if you plan to use that for a front case port, you'll need to do some creative routing of the cable. The RAM slots are configured such that channel A is slots 1 and 3 while channel B is slots 2 and 4. What that means is that with two DIMMs installed in dual channel operation, there is very little room between the DIMMs. We prefer channel A to be slots 1 and 2 with B being 3 and 4, as the majority of people will run only two DIMMs, and a bit of extra breathing room isn't a bad idea. Everything else looks fine, with enough clearance around the CPU socket for most HSFs, and room between the PEG slot and the NB HSF.
Unlike the LanParty series, the Infinity is pretty boring in terms of looks. A standard brownish PCB with no UV reactive parts isn't the best fit for a windowed case, but if you're like me and don't care for case windows, it doesn't really matter. Also missing relative to the LanParty are the rounded cables and onboard power and reset buttons. Those buttons can be handy for testing outside of a case. (Of course, if you're adventurous, you can always just use a small metal item to short the required pins to accomplish the same result - don't blame us if you fry your system that way, though!) One complaint that we did have was with the X16 PEG retention mechanism. Many boards have a clip that locks the rear of the graphics card into place, but the Infinity has a sort of "hook" design. It works okay for holding the GPU in the slot, but removing the GPU can be a bit more difficult than what we'd like. We'd also prefer a larger heat sink on the Northbridge, perhaps with passive cooling. The NB did get quite warm at the highest overclocks, and there looks to be plenty of room to move it up closer to the CPU socket. The small fan did make a bit of noise, though "silent" and "overclocking" rarely go together.
The feature list of the board is very similar to the LanParty boards. The BIOS offers very good tweaking options, but voltages are slightly more limited than the higher-end boards. 3.2V maximum on the RAM is plenty for most people, but it did prove limiting on some OCZ VX Gold that we tried, reaching a maximum of 2-3-3-8-1T timings at DDR500. (That RAM was not used during testing for this particular article, so we mention it merely as a point of interest.) The CPU voltage topped out a 1.85V, which is a lot higher than the default voltage of most 90nm AMD chips. We're a little uncomfortable pushing our CPUs even to that level, though with water cooling or something more exotic, a higher voltage level might prove useful.
Overall, we're very impressed with this value offering from DFI. They basically stripped away the flash and the frills and knocked around $20 off the price of the LanParty UT nF4 Ultra-D. The question is: do you really want to save the $20? Modders can try turning the Ultra-D board into an SLI model, and the rounded cables and UT reactive design may appeal to some. On the other hand, the Infinity SLI guarantees SLI capability and costs about the same amount as the Ultra-D. If you want to push overclocking a little further, the LanParty boards (and competitors) might be a bit better. If you're trying to stick to a budget without cutting necessary features, the Infinity line keeps you covered.
Having selected the processor and motherboard, we're still only half way through our critical component choices. Hard drives, floppy drives, optical drives, and even graphics cards have little to no impact on overclocking, so you can get whatever you want in those areas. We'd question the purchase of a low end graphics card with such a system, unless there's a specific desire to have a fast processor for video/audio encoding. That sort of work is often for a real job, though, and we're hesitant to suggest that anyone overclock a system that is being used for important work. If a gaming PC crashes and somehow corrupts your entire hard drive, you reformat and reinstall. A work PC going through the same problems would be a lot more painful. We've already given our warnings about overclocking, however, so do what you will. What remains, then, are the last three components that will generally have an impact on your overclocking endeavors.
We wanted to spend a few minutes looking at the motherboard options before continuing - a mini review if you will, as we haven't officially reviewed this board and we want to compare it to the LANPARTY UT nF4 Ultra-D. We're using the DFI NF4 INFINITY, but it is actually just the new name for the DFI NF4-DAGF. There are multiple models of the INFINITY/DAGF, using everything from the base nForce4 4X chipset to the top nForce4 Ultra and SLI. We're using the "middle" model, the nForce4 Standard. The main difference is that all the networking features of the chipset are enabled and official support for 1000 MHz HyperTransport is also present. The only extra that the Ultra offers is SATA-II (3 Gbps) hard drive support, while the 4X limits the HT bus to 800 MHz. SLI adds dual PEG slots to the mix, of course. We heard directly from DFI that the DAGF was being renamed to "INFINITY", but if you still think that there's a difference, we offer these two shots obtained from Newegg and TigerDirect.
TigerDirect lists the board as the INFINITY while Newegg uses the older DAGF moniker. We've resized the images for comparison, with TigerDirect on the left and Newegg on the right. Other than a slight difference in contrast levels and viewing angle, we can't spot any changes. Besides, we're inclined to take DFI at their word. Here's a better shot of our particular board.
The layout is generally good, if not great. The 4-pin ATX12V connector is about the only minor concern, as it's between the RAM and CPU socket. The cable will need to be snaked over the CPU heat sink, but it shouldn't present any real problems. IDE, floppy, SATA, and 24-pin ATX power are all located in the preferred board edge locations. The location of the extra Firewire port is a bit odd, so if you plan to use that for a front case port, you'll need to do some creative routing of the cable. The RAM slots are configured such that channel A is slots 1 and 3 while channel B is slots 2 and 4. What that means is that with two DIMMs installed in dual channel operation, there is very little room between the DIMMs. We prefer channel A to be slots 1 and 2 with B being 3 and 4, as the majority of people will run only two DIMMs, and a bit of extra breathing room isn't a bad idea. Everything else looks fine, with enough clearance around the CPU socket for most HSFs, and room between the PEG slot and the NB HSF.
Unlike the LanParty series, the Infinity is pretty boring in terms of looks. A standard brownish PCB with no UV reactive parts isn't the best fit for a windowed case, but if you're like me and don't care for case windows, it doesn't really matter. Also missing relative to the LanParty are the rounded cables and onboard power and reset buttons. Those buttons can be handy for testing outside of a case. (Of course, if you're adventurous, you can always just use a small metal item to short the required pins to accomplish the same result - don't blame us if you fry your system that way, though!) One complaint that we did have was with the X16 PEG retention mechanism. Many boards have a clip that locks the rear of the graphics card into place, but the Infinity has a sort of "hook" design. It works okay for holding the GPU in the slot, but removing the GPU can be a bit more difficult than what we'd like. We'd also prefer a larger heat sink on the Northbridge, perhaps with passive cooling. The NB did get quite warm at the highest overclocks, and there looks to be plenty of room to move it up closer to the CPU socket. The small fan did make a bit of noise, though "silent" and "overclocking" rarely go together.
DFI nF4 Infinity Specifications | |
CPU Interface | Socket 939 Athlon 64 |
Chipset | nForce4 Standard (single chip) |
BUS Speeds | 200MHz to 450MHz (in 1MHz increments) |
PCI/AGP Speeds | Asynchronous (Fixed) |
PCI Express | 100MHz to 145MHz in 1MHz increments |
CPU Voltage | Auto, 0.800V to 1.850V in 0.025V increments |
DRAM Voltage | 2.5V to 3.2V in 0.1V increments |
Chipset Voltage | 1.5V, 1.6V, 1.7V |
Hyper Transport Ratios | Auto, 1.0, 2.0, 3.0, 4.0, 5.0 |
LDT Bus Transfer | 16/16, 16/8, 8/16, 8/8 |
CPU Ratios | Auto, 4x to 25x in .5x increments |
DRAM Speeds | Auto, 100, 133, 150, 166, 200 |
Memory Command Rate | Auto, 1T, 2T |
Memory Slots | Four 184-pin DDR Dual-Channel Slots Unbuffered ECC or non-ECC Memory to 4GB Total |
Expansion Slots | 1 X16 PCIe Slots 2 X1 PCIe 3 PCI Slots |
Onboard SATA | 4-Drive SATA by nF4 |
Onboard IDE | Two Standard NVIDIA ATA133/100/66 (4 drives) |
SATA/IDE RAID | 4-Drive SATA plus 4-Drive IDE (8 total) Can be combined in RAID 0, 1 |
Onboard USB 2.0/IEEE-1394 | 10 USB 2.0 ports supported nF4 2 1394A FireWire ports by VIA VT6307 |
Onboard LAN | Gigabit Ethernet PCIe by Vitesse VSC8201 PHY |
Onboard Audio | Realtek ALC655 6-Channel codec 3 UAJ audio jacks CD-in, front audio, and coaxial SPDIF In and Out |
BIOS | Award 8/11/2005 Release, CK84D811 |
The feature list of the board is very similar to the LanParty boards. The BIOS offers very good tweaking options, but voltages are slightly more limited than the higher-end boards. 3.2V maximum on the RAM is plenty for most people, but it did prove limiting on some OCZ VX Gold that we tried, reaching a maximum of 2-3-3-8-1T timings at DDR500. (That RAM was not used during testing for this particular article, so we mention it merely as a point of interest.) The CPU voltage topped out a 1.85V, which is a lot higher than the default voltage of most 90nm AMD chips. We're a little uncomfortable pushing our CPUs even to that level, though with water cooling or something more exotic, a higher voltage level might prove useful.
Overall, we're very impressed with this value offering from DFI. They basically stripped away the flash and the frills and knocked around $20 off the price of the LanParty UT nF4 Ultra-D. The question is: do you really want to save the $20? Modders can try turning the Ultra-D board into an SLI model, and the rounded cables and UT reactive design may appeal to some. On the other hand, the Infinity SLI guarantees SLI capability and costs about the same amount as the Ultra-D. If you want to push overclocking a little further, the LanParty boards (and competitors) might be a bit better. If you're trying to stick to a budget without cutting necessary features, the Infinity line keeps you covered.
Having selected the processor and motherboard, we're still only half way through our critical component choices. Hard drives, floppy drives, optical drives, and even graphics cards have little to no impact on overclocking, so you can get whatever you want in those areas. We'd question the purchase of a low end graphics card with such a system, unless there's a specific desire to have a fast processor for video/audio encoding. That sort of work is often for a real job, though, and we're hesitant to suggest that anyone overclock a system that is being used for important work. If a gaming PC crashes and somehow corrupts your entire hard drive, you reformat and reinstall. A work PC going through the same problems would be a lot more painful. We've already given our warnings about overclocking, however, so do what you will. What remains, then, are the last three components that will generally have an impact on your overclocking endeavors.
101 Comments
View All Comments
Lonyo - Tuesday, October 4, 2005 - link
NO, DON'T, UNLESS YOU HAVE SOMETHING BETWEEN YOUR FINGER AND THE PASTE.Arctic Silver 5 instructions:
DO NOT use your bare finger to apply or smooth the compound (skin cells, and oils again).
JarredWalton - Tuesday, October 4, 2005 - link
Er... I didn't use Arctic Silver. Just the grease that came with the XP-90. I suppose there might be some thermal compounds that would be bad to touch. RTFM, right?Anyway, I'm not particularly convinced of the effectiveness of stuff like Arctic Silver. At one point, there was some story about how the AS batches for a while didn't actually contain any silver because the manufacturing company was skimping on costs (unbeknownst to Arctic Silver or their customers). I could be wrong, but I'm half-convinced AS is just a placebo effect. :)
poohbear - Tuesday, January 3, 2006 - link
that wasnt arctic silver, that was another company entirely (name eludes me since it was 2+ years ago)PrinceGaz - Tuesday, October 4, 2005 - link
Regardless of the compound, you shouldn't touch it with your finger for the reason stated-- skin cells and grease from your finger will be left on the grease and they act as a barrier that reduces thermal-conduction. The simplest way to avoid this is to put a clean plastic bag over your hand before touching the compound as that will prevent any contamination.Regardless of what you say about AS5, numerous reviews of thermal-compunds have shown that compared to the the standard grease supplied with AMD boxed processors, AS5 alone can lower temperatures by a few degrees C. Given how cheap AS5 is compared with a decent heatsink (like the XP-90), it is a very good idea to get some AS5 if also buying a better HSF than what is supplied with the CPU. Using the grease supplied with the CPU or heatsink is a false economy.
THG64 - Tuesday, October 4, 2005 - link
From my own experience I would say the BIOS is at least as important as the hardware itself.My A8N using 1004 final BIOS can run my A64 3200+ @ 2500 MHz (10 x 250, 1.4125V) and the memory at 208 MHz 1T (2x 1GB MDT DDR400 2.5-3-3-8). There is no chance to get a higher frequency running because I get memory problems at anything above 250 MHz (known as 1T bug). I tested the memory up to 217MHz so its not the limiting factor.
Over the months I made many attempts to upgrade BIOS to newer versions and had no luck at all. The last version were even more interesting because of the A64 X2 support. No chance to get even up to 250MHz base. Only the reason has changed it seems. I made a HD upgrade in between and switched from a PATA drive to a SATA drive. This made it even worse.
From 1005 to 1010 the BIOS limited the overclocking to 215 to 220 MHz through reworked memory options. After 1010 the memory isn't the problem anymore or at least not the main problem. Windows is loading until desktop and while the OS is still loading in background the HD LED stays on and the system freezes.
As mentioned in the conclusion the SATA controller seems to limit the possible o/c.
If there would be a lowcost PCIe SATA controller I would surely give it a try but at the moment I stay with 1004 and and more or less working SATA drive at 250 MHz.
lopri - Tuesday, October 4, 2005 - link
Hi,I'm currently running X2 4800+ in my rig. I think I can safely OC it to 2750MHz. But the thing is, my RAM can only do 220MHz.. And the mobo doesn't support anything other than DDR400, DDR333, DDR266. (A8N-SLI Premium)
What are the penalty of running a half-multi? I understand a half-multi won't get you the ideal memp speed, but in my situation I can make up for it by being able to raise the HTT some more. Basically I have following options.
CPU (Max): 2750MHz @1.475V
RAM (Max): 220MHz @2.75V (2-3-2-5-1T)
Therefore, here is what I can do:
1. 10.5 x 261: This gives me CPU 2741MHz and memory 211MHz. (from CPU-Z reading)
2. 11 x 250: This give me CPU 2750Mhz and memory 196Mhz. (from CPU-Z reading)
If I run Sandra I get almost the same CPU score from both settings. But I get a quite bigger memory bandwidth score from the Setting #1. In ideal world (that is, if only the final achieved speed matters), I definitely think the Setting #1 is better. I'd like to know if there is any "inherent" penalty attached to non-integer multipliers.
Could you help me out? Thanks a bunch!
lop
JarredWalton - Tuesday, October 4, 2005 - link
At one point in time, the half multipliers didn't really work properly. They were just hiding some behind-the-scenes memory and bus tweaks. CPU-Z apparently doesn't report this properly. Anyway, if the system runs stable in either configuration, take the configuration that performs better. (Run a variety of tests - memory bandwidth alone doesn't tell the whole story.)Sunrise089 - Tuesday, October 4, 2005 - link
How important is that XP-90? I am wondering if you all feel it is necessary, feel it is necessary for long term safety, or really feel the $45 would be better spent elsewhere?P.S. - Thanks Anandtech. 3000+, X-800 GTO2, and value RAM costs about $400, and overclocked performs about as fast as a stock speed FX-55, x850 xt-pe, and high-end RAM costing $1000+. Your last two updates alone could have saved someone $600.
JarredWalton - Tuesday, October 4, 2005 - link
You can get the XP-90 and a 92mm fan for about $40 shipped, but what's $5? How important is it? Well, I think you could probably get an extra 100 to 200 MHz relative to the retail HSF. I'll be working on testing a few cooling options in a future article. The XP-90 is quieter than the retail fan, but other than that... I'll have to see what difference it makes.da2ce7 - Tuesday, October 4, 2005 - link
When I over clocked my X2 3800+ I got up to 2.6ghz, at 1.45V;But What I am really want to know about it the both the “safe” and “generally stable” cup temperatures, a table of temps from below 20ºC to 80ºC, where the core goes up in smoke (well maybe not that), would be most helpful.