Intel's Core 2 Extreme & Core 2 Duo: The Empire Strikes Back
by Anand Lal Shimpi on July 14, 2006 12:00 AM EST- Posted in
- CPUs
New Pricing
As you will soon see, Intel's new Core 2 lineup has basically made all previous Intel processors worthless. The performance of the new Core 2 CPUs is so much greater, with much lower power consumption, that owners of NetBurst based processors may want to dust off the old drill bits and make some neat looking keychains.
Intel also realizes that its new Core 2 line will make its older Pentium D and Pentium Extreme Edition processors seem a bit homely, and thus it will significantly reduce the pricing on some of the CPUs by the end of this month to help spruce them up a bit.
Intel's new pricing, effective starting July 23rd, is listed below:
CPU | Clock Speed | L2 Cache | Price |
Intel Core 2 Extreme X6800 | 2.93GHz | 4MB | $999 |
Intel Core 2 Duo E6700 | 2.66GHz | 4MB | $530 |
Intel Core 2 Duo E6600 | 2.40GHz | 4MB | $316 |
Intel Core 2 Duo E6400 | 2.13GHz | 2MB | $224 |
Intel Core 2 Duo E6300 | 1.86GHz | 2MB | $183 |
Intel Pentium D 945 | 3.40GHz | 2MBx2 | $163 |
Intel Pentium D 915 | 2.80GHz | 2MBx2 | $133 |
Intel Pentium D 820 | 2.80GHz | 1MBx2 | $113 |
Intel Pentium D 805 | 2.66GHz | 1MBx2 | $93 |
The table above only showcases the NetBurst CPUs that are actually cheaper than their Core 2 counterparts; there are a number that are priced equal to Core 2 options, but you'll want to stay away from those (more blatant foreshadowing).
Unfortunately AMD won't have an architectural update of the Athlon 64 X2 until sometime in 2007 or 2008, thus its only response to Intel's Core 2 lineup today is to also reduce pricing. Shortly before today's launch AMD informed us that more aggressive price cuts for the Athlon 64 X2 line were coming in July, but we couldn't get any more specific information. The best numbers we've got are those that were leaked shortly after Computex, which may end up being higher than what AMD is now thinking of doing:
CPU | Clock Speed | L2 Cache | Projected Price |
AMD Athlon 64 X2 5000+ | 2.6GHz | 512KBx2 | $403 |
AMD Athlon 64 X2 4600+ | 2.4GHz | 512KBx2 | $301 |
AMD Athlon 64 X2 4200+ | 2.2GHz | 512KBx2 | $240 |
AMD Athlon 64 X2 3800+ | 2.0GHz | 512KBx2 | $169 |
In order to keep prices competitive, AMD is also killing off its Athlon 64 X2s with a 1MB L2 cache. By only shipping 512KB parts (except for the limited quantities of FX processors that are sold), AMD can produce more CPUs per wafer and thus help increase supply and offer lower prices.
Below we've compared both AMD and Intel's proposed price cuts, and as you can see, AMD needs to do a lot more in order to remain competitive.
CPU | Clock Speed | L2 Cache | Price |
Intel Core 2 Extreme X6800 | 2.93GHz | 4MB | $999 |
Intel Core 2 Duo E6700 | 2.66GHz | 4MB | $530 |
AMD Athlon 64 X2 5000+ | 2.6GHz | 512KBx2 | $403* |
Intel Core 2 Duo E6600 | 2.40GHz | 4MB | $316 |
AMD Athlon 64 X2 4600+ | 2.4GHz | 512KBx2 | $301* |
AMD Athlon 64 X2 4200+ | 2.2GHz | 512KBx2 | $240* |
Intel Core 2 Duo E6400 | 2.13GHz | 2MB | $224 |
Intel Core 2 Duo E6300 | 1.86GHz | 2MB | $183 |
AMD Athlon 64 X2 3800+ | 2.0GHz | 512KBx2 | $169* |
Intel Pentium D 945 | 3.40GHz | 2MBx2 | $163 |
Intel Pentium D 915 | 2.80GHz | 2MBx2 | $133 |
Intel Pentium D 820 | 2.80GHz | 1MBx2 | $113 |
Intel Pentium D 805 | 2.66GHz | 1MBx2 | $93 |
*Note: The AMD prices are still rumored. We're waiting for final confirmation from AMD for accuracy.
Based on these prices, AMD's Athlon 64 X2 4600+ would have to beat Intel's E6600, the 4200+ would have to beat the E6400 and the X2 3800+ would have to be somewhere in between the performance of a Pentium D 940/945 and an E6300.
We're getting the impression that AMD may be cutting prices more than what we've seen here, but we have no idea to what degree yet. By the end of this year AMD will also offer higher clock speeds as well as its new 4x4 platform (dual socket, dual core desktop Athlon 64 FX motherboards), but that's all we can expect for the foreseeable future.
202 Comments
View All Comments
coldpower27 - Friday, July 14, 2006 - link
Are there supposed to be there as they aren't functioning in Firefox 1.5.0.4coldpower27 - Friday, July 14, 2006 - link
You guys fixed it awesome.Orbs - Friday, July 14, 2006 - link
On "The Test" page (I think page 2), you write:please look back at the following articles:
But then there are no links to the articles.
Anyway, Anand, great report! Very detailed with tons of benchmarks using a very interesting gaming configuration, and this review was the second one I read (so it was up pretty quickly). Thanks for not saccrificing quality just to get it online first, and again, great article.
Makes me want a Conroe!
Calin - Friday, July 14, 2006 - link
Great article, and thanks for a well done job. Conroe is everything Intel marketing machine shown it to be.stepz - Friday, July 14, 2006 - link
The Core 2 doesn't have smaller emoty latency than K8. You're seeing the new advanced prefetcher in action. But don't just believe me, check with the SM2.0 author.Anand Lal Shimpi - Friday, July 14, 2006 - link
That's what Intel's explanation implied as well, when they are working well the prefetchers remove the need for an on-die memory controller so long as you have an unsaturated FSB. Inevitably there will be cases where AMD is still faster (from a pure latency perspective), but it's tough to say how frequently that will happen.Take care,
Anand
stepz - Friday, July 14, 2006 - link
Excuse me. You state "Intel's Core 2 processors now offer even quicker memory access than AMD's Athlon 64 X2, without resorting to an on-die memory controller.". That is COMPLETELY wrong and misleading. (see: http://www.aceshardware.com/forums/read_post.jsp?i...">http://www.aceshardware.com/forums/read_post.jsp?i... )It would be really nice from journalistic integrity point of view and all that, if you posted a correction or atleast silently changed the article to not be spreading incorrect information.
Oh... and you really should have smelt something fishy when a memory controller suddenly halves its latency by changing the requestor.
stepz - Friday, July 14, 2006 - link
To clarify. Yes the prefetching and espescially the speculative memory op reordering does wonders for realworld performance. But then let the real-world performance results speak for themselves. But please don't use broken synthetic tests. The advancements help to hide latency from applications that do real work. They don't reduce the actual latency of memory ops that that test was supposed to test. Given that the prefetcher figures out the access pattern of the latency test, the test is utterly meaningless in any context. The test doesn't do anything close to realworld, so if its main purpose is broken, it is utterly useless.JarredWalton - Friday, July 14, 2006 - link
Modified comments from a similar thread further down:Given that the prefetcher figures out the access pattern of the latency test, the test is utterly meaningless in any context."
That's only true if the prefetcher can't figure out access patterns for all other applications as well, and from the results I'm pretty sure it can. You have to remember, even with the memory latency of approximately 35 ns, that delay means the CPU now has about 100 cycles to go and find other stuff to do. At an instruction fetch rate of 4 instructions per cycle, that's a lot of untapped power. So, while it waits on main memory access one, it can be scanning the next accesses that are likely to take place and start queuing them up and priming the RAM. The net result is that you may never actually be able to measure latency higher than 35-40 ns or whatever.
The way I think of it is this: pipeline issues aside, a large portion of what allowed Athlon 64 to outperform NetBurst was reduced memory latency. Remember, Pentium 4 was easily able to outperform Athlon XP in the majority of benchmarks -- it just did so at higher clock speeds. (Don't *even* try to tell me that the Athlon XP 3200+ was as fast as a Pentium 4 3.2 GHz! LOL. The Athlon 64 3200+ on the other hand....) AMD boosted performance by about 25% by adding an integrated memory controller. Now Intel is faster at similar clock speeds, and although the 4-wide architectural design helps, not to mention 4MB shared L2, they almost certainly wouldn't be able to improve performance without improving memory latency -- not just in theory, but in actual practice. Looking at the benchmarks, I have to think that our memory latency scores are generally representative of what applications see.
If you have to engineer a synthetic application specifically to fool the advanced prefetcher and op reordering, what's the point? To demonstrate a "worst case" scenario that doesn't actually occur in practical use? In the end, memory latency is only one part of CPU/platform design. The Athlon FX-62 is 61.6% faster than the Pentium XE 965 in terms of latency, but that doesn't translate into a real world performance difference of anywhere near 60%. The X6800 is 19.3% faster in memory latency tests, and it comes out 10-35% faster in real world benchmarks, so again there's not an exact correlation. Latency is important to look at, but so is memory bandwidth and the rest of the architecture.
The proof is in the pudding, and right now the Core 2 pudding tastes very good. Nice design, Intel.
coldpower27 - Friday, July 14, 2006 - link
But why are you posting the Manchester core's die size?What about the Socket AM2 Windsor 2x512KB model which has a die size of 183mm2?