HD Video Playback: H.264 Blu-ray on the PC
by Derek Wilson on December 11, 2006 9:50 AM EST- Posted in
- GPUs
H.264 Encoded HD Content: A Good Thing
Almost anything can be done in a faster, more compact, or higher quality way. Sometimes there are tradeoffs to be made, and sometimes one way of doing things is just better than another. It has been quite some time since studios began distributing movies encoded in MPEG-2 stored on DVDs. Now that we have some new physical media entering the market, we will also see more efficient codecs enter the playing field as well.
H.264 is another name for a subset of MPEG-4 called MPEG-4 Part 10, or AVC (for Advanced Video Coding). This codec is a big step beyond MPEG-2 in terms of how heavily video of a given quality can be compressed. There are quite a few factors that make H.264 a better vehicle for video, but these are a little beyond the scope of this article. For now we will focus on the impact of H.264 and why it's a better option than MPEG-2.
The major benefit of H.264 over MPEG-2 is its small file size due to high compression. High resolution video can be stored in much less space. This is very useful because even though BDs can be 25 or 50 GB, high quality high resolution video is not small. The higher the compression we have, the higher the quality of video that will fill up a disk. Alternately, with high compression we also have extra room for the all important bonus features and extra content that we expect with any good DVD today.
Higher image quality is also inherent in H.264 due to some of the improved features of the codec. Variable block size motion compensation, better handling of interlaced video, in-loop deblocking, and better subpixel accuracy all contribute to a better overall image quality. Alternately, studios can use the image quality advantages to lower bitrate even more, as compression artifacts don't show up as readily.
With all these advantages, there is one downside to H.264: decoding the video takes much more work than with MPEG-2. High powered, dedicated H.264 decoding hardware is required in standalone BD and HDDVD players, as a generic processor just isn't enough to handle the work load. This is understandable as we have to make a tradeoff between file size/bitrate and the amount of work a CPU needs to do to reproduce the video, and H.264 produces very small files.
The large file size vs. heavy compression issue is actually fairly intuitive. Imagine completely uncompressed video where every pixel of every frame is stored in memory. The only thing we need to do to display the video is to send the data to the TV. This requires almost no processing but very high file size and bandwidth from the storage media. As a reference point, uncompressed 24-bit 1080p content at 24fps (the standard frame rate for movies) would require a whopping 1.19 Gbps of bandwidth and a 90 minute movie would need about 750GB of storage. Obviously, some form of compression is absolutely required.
When storing less data through compression, the CPU must do work to fill in the blanks before sending the video out to a display. With our previous Blu-ray test movie Click (which used MPEG-2), we saw bitrates of 50-60 Mbps throughout our test (representing somewhere between a 20:1 and 24:1 compression rate). Moving to X-Men: The Last Stand, most of our test is at about 20 Mbps, though we do see a very short spike that hits over 40 Mbps (somewhere around a 60:1 compression rate). We would need to compare the same section of one movie encoded in both MPEG-2 and H.264 in order to speak directly to the differences between the two, but for now we will generally see at least half the bitrate with H.264 that we get with MPEG-2. We also see a much lower CPU utilization with MPEG-2 because it doesn't compress the video as much as H.264.
If we focus on our high compression codec, we'll see that higher bitrates with H.264 mean more work for the CPU. When complex scenes occur, more data is required to generate a proper image. The CPU still needs to process all this data in the same way it would with a less complex scene, and we end up seeing higher processor utilization.
The encoding process takes more work as well, and we've been told that this is part of the reason we haven't seen many H.264 BD movies before now. When getting a movie ready for sale, studios will encode it many times and have people to view every frame of video and make sure nothing needs to be cleaned up. Every time a problem is found, the entire movie must be encoded again. It takes significantly more time to do this with H.264 than with MPEG-2. Fortunately, it seems that studios are making the sacrifices they need to make in order to bring a better experience to the end user.
To sum up, while MPEG-2 is relatively easy to decode, H.264 enables smaller files with better image quality. On the down side, the time it takes to encode a movie using H.264 is much higher than required for MPEG-2, and the processing power needed to decode H.264 without dropping frames can be very large. Without GPU acceleration, not even an Intel Core 2 Duo E6600 can play X-Men: The Last Stand without dropping frames.
Before we get to the test, we'll leave you with a short list of H.264 Blu-ray titles. While we don't have the bitrate information for all of these, we chose X-Men: The Last Stand because it listed 18 Mbps video (higher than some of the others) and has some fairly complex special effects.
Blu-ray H.264 Movies:
Behind Enemy Lines
The League of Extraordinary Gentlemen
X-Men: The Last Stand
Speed
Glory Road
Gone in 60 Seconds
Eight Below
The Great Raid
Almost anything can be done in a faster, more compact, or higher quality way. Sometimes there are tradeoffs to be made, and sometimes one way of doing things is just better than another. It has been quite some time since studios began distributing movies encoded in MPEG-2 stored on DVDs. Now that we have some new physical media entering the market, we will also see more efficient codecs enter the playing field as well.
H.264 is another name for a subset of MPEG-4 called MPEG-4 Part 10, or AVC (for Advanced Video Coding). This codec is a big step beyond MPEG-2 in terms of how heavily video of a given quality can be compressed. There are quite a few factors that make H.264 a better vehicle for video, but these are a little beyond the scope of this article. For now we will focus on the impact of H.264 and why it's a better option than MPEG-2.
The major benefit of H.264 over MPEG-2 is its small file size due to high compression. High resolution video can be stored in much less space. This is very useful because even though BDs can be 25 or 50 GB, high quality high resolution video is not small. The higher the compression we have, the higher the quality of video that will fill up a disk. Alternately, with high compression we also have extra room for the all important bonus features and extra content that we expect with any good DVD today.
Higher image quality is also inherent in H.264 due to some of the improved features of the codec. Variable block size motion compensation, better handling of interlaced video, in-loop deblocking, and better subpixel accuracy all contribute to a better overall image quality. Alternately, studios can use the image quality advantages to lower bitrate even more, as compression artifacts don't show up as readily.
With all these advantages, there is one downside to H.264: decoding the video takes much more work than with MPEG-2. High powered, dedicated H.264 decoding hardware is required in standalone BD and HDDVD players, as a generic processor just isn't enough to handle the work load. This is understandable as we have to make a tradeoff between file size/bitrate and the amount of work a CPU needs to do to reproduce the video, and H.264 produces very small files.
The large file size vs. heavy compression issue is actually fairly intuitive. Imagine completely uncompressed video where every pixel of every frame is stored in memory. The only thing we need to do to display the video is to send the data to the TV. This requires almost no processing but very high file size and bandwidth from the storage media. As a reference point, uncompressed 24-bit 1080p content at 24fps (the standard frame rate for movies) would require a whopping 1.19 Gbps of bandwidth and a 90 minute movie would need about 750GB of storage. Obviously, some form of compression is absolutely required.
When storing less data through compression, the CPU must do work to fill in the blanks before sending the video out to a display. With our previous Blu-ray test movie Click (which used MPEG-2), we saw bitrates of 50-60 Mbps throughout our test (representing somewhere between a 20:1 and 24:1 compression rate). Moving to X-Men: The Last Stand, most of our test is at about 20 Mbps, though we do see a very short spike that hits over 40 Mbps (somewhere around a 60:1 compression rate). We would need to compare the same section of one movie encoded in both MPEG-2 and H.264 in order to speak directly to the differences between the two, but for now we will generally see at least half the bitrate with H.264 that we get with MPEG-2. We also see a much lower CPU utilization with MPEG-2 because it doesn't compress the video as much as H.264.
If we focus on our high compression codec, we'll see that higher bitrates with H.264 mean more work for the CPU. When complex scenes occur, more data is required to generate a proper image. The CPU still needs to process all this data in the same way it would with a less complex scene, and we end up seeing higher processor utilization.
The encoding process takes more work as well, and we've been told that this is part of the reason we haven't seen many H.264 BD movies before now. When getting a movie ready for sale, studios will encode it many times and have people to view every frame of video and make sure nothing needs to be cleaned up. Every time a problem is found, the entire movie must be encoded again. It takes significantly more time to do this with H.264 than with MPEG-2. Fortunately, it seems that studios are making the sacrifices they need to make in order to bring a better experience to the end user.
To sum up, while MPEG-2 is relatively easy to decode, H.264 enables smaller files with better image quality. On the down side, the time it takes to encode a movie using H.264 is much higher than required for MPEG-2, and the processing power needed to decode H.264 without dropping frames can be very large. Without GPU acceleration, not even an Intel Core 2 Duo E6600 can play X-Men: The Last Stand without dropping frames.
Before we get to the test, we'll leave you with a short list of H.264 Blu-ray titles. While we don't have the bitrate information for all of these, we chose X-Men: The Last Stand because it listed 18 Mbps video (higher than some of the others) and has some fairly complex special effects.
Blu-ray H.264 Movies:
Behind Enemy Lines
The League of Extraordinary Gentlemen
X-Men: The Last Stand
Speed
Glory Road
Gone in 60 Seconds
Eight Below
The Great Raid
86 Comments
View All Comments
Stereodude - Wednesday, December 13, 2006 - link
Also, there's http://www.avsforum.com/avs-vb/showthread.php?p=91...">this post on AVSforum. The poster had no problems playing back Xmen-3 with a "P4 3.2Ghz HT system and a Radeon X1950Pro". Clearly a 3.2gHz HT P4 isn't nearly as powerful as any of those C2D processor nor was the X1950Pro as the various nVidia cards.Stereodude - Wednesday, December 13, 2006 - link
Perhaps, but nVidia intentionally sent them a H.264 torture test disc that's not available in the US. That also doesn't explain why the 7600GT nearly cut the CPU usage in half for one review, but only helped 20% in the other.Also, nVidia says an E6330 or X2 4200+ with a 7600GT is adequate for the most demanding H.264 titles. That sure doesn't agree with the conclusion of this Anandtech piece, which says you need a 8800GTX card to use a E6300.
balazs203 - Wednesday, December 13, 2006 - link
In the PC Perspective article they say:"In our testing the H.264 bit rates were higher than the VC-1 rates, in the high 18-19 Mbps up to 22 Mbps in some cases."
That is about half the maximum bitrate of the Anadtech tested disc.
Stereodude - Wednesday, December 13, 2006 - link
Since when does bitrate = difficulty to decode?DerekWilson - Thursday, December 14, 2006 - link
bitrate does equal difficulty to decode because it equals more to do per frame.frogge - Tuesday, December 12, 2006 - link
64 bit OS vs 32 bit...puffpio - Tuesday, December 12, 2006 - link
Will you start using more updated/modern encoding CPU tests for H.264 encoding? Currently you use Quicktime right? That doesn't use many of H264's advanced features.Have you considered using x264 (an open source encoder of H264 that generates the best quality encodes of publicly available H264 encoders) using a standard set of encoding parameters?
Nothing taxes a CPU better than video encoding :)
rain128 - Tuesday, December 12, 2006 - link
Im little bit sceptic about those test results. Becuse my Home computer on the subject line played Dejavu clip (downloaded from Apple website trailer 1 - 1080p) with CPU usage 40..60% and with current version of NVIDIA drivers. Wiht older drivers (dont know excact version, installed those over a year ago) average farame rate was between 50...70%.For a decoder used PowerDVD 7, installed trial and even when cyberlinks webpage says that H.264 codec doesnt work with trial version i had now problems with it. Gspot reported for a default rendering path Cyberlinks H.264 codec. For fulscreen capability used BSPlayer, strange was that Windows mediaplayer didnt want to play that trial eventhough all other players had no problem finding installed codecs.
TIP: with BSPlayer you can see droped frame rate count.
Renoir - Tuesday, December 12, 2006 - link
The h.264 clips on the apple website tend to have lower bit rates than those found on blu-ray discs so that explains your cpu usage.DerekWilson - Tuesday, December 12, 2006 - link
this is what we have found as well, and is also why looking at BD and HDDVD performance is more important than when we've looked at downloaded clips in the past