Actual Application Times - Multimedia and File Manipulation

The following tests require a fast CPU and excellent write performance of the disk drive. Our Super Talent drive will probably never run video/audio encoding applications in its target market so our tests are only meaningful for indicating the write performance of the drive in write heavy applications. These results and any conclusions about the performance of the drive need to be tempered with the commercial/industrial market this drive is designed to operate in. Again, we fully expect the new consumer SSD drives from Samsung and SanDisk to be competitive in these tests considering their improved write speeds.

Nero Recode

Our encoding test is quite easy - we take our original Office Space DVD and use AnyDVD Ripper to copy the full DVD to the hard drive without compression, thus providing an almost exact duplicate of the DVD. We then fire up Nero Recode 2, select our Office Space copy on the hard drive, and perform a shrink operation to allow the entire movie along with extras to fit on a single 4.5GB DVD disc. We leave all options on their defaults except we turn off the advanced analysis option. The scores reported include the full encoding process and are represented in seconds, with lower numbers indicating better performance.

Media Encoding Performance - Nero Recode 2

This test is dependent on CPU performance and the write performance of the drive. As in our PCMark05 tests, the write performance of the Super Talent drive does not match that of our other test drives and is a little over four times slower than our Raptor drive, but it did finish the test without any issues.

WinRAR 3.62

Our WinRAR test measures the time it takes to compress our test folder that contains 444 files, 10 folders, and 602MB of data. This is the same test folder utilized in our IPEAK test suite. While the benchmark is CPU intensive for the compression tests it still requires a fast storage system to keep pace with the CPU. A drive that offers excellent write performance can make a slight difference in this benchmark.

File Compression Performance - WinRAR 3.62

This test relies much more on the CPU and burst rates of the storage system. Even handicapped with 25 MB/sec write speed, the Super Talent drive is only about 7% slower than the Raptor.

File Copy Performance

Our first file copy test measures the time it takes to transfer our test folder that contains 29 files, 1 folder, and has 7.55GB of data from our source drive to the target test drive. This benchmark is disk write intensive and requires a fast storage system.

File Copy Performance - Office Space

We finish our application tests with a benchmark that favors the hard disk drives due to being a pure write scenario. As in PCMark05 where the largest differences in scores were generated with the write tests, we see the SSD product being over four times slower than the Raptor. This was fully expected but not that bad when compared to the 5400rpm drives from a few years ago - especially the 2.5" laptop models.

Gaming Performance Operating System Times
Comments Locked

44 Comments

View All Comments

  • Samus - Monday, May 7, 2007 - link

    Simply awesome, thanks for the review Gary. This is exciting technology for sure. Only took them 20 years to make it cost effective and reasonably good storage.
  • redbone75 - Monday, May 7, 2007 - link

    I would say SSD's have a few more years to go before they become cost effective, in the home consumer market, anyway. That market will be very small until the price/GB becomes more reasonable.
  • Lonyo - Monday, May 7, 2007 - link

    Is there any chance for comparison of some 1.8" drives in the future?
    Since 1.8" mechanical drives are somewhat slower than 2.5 or 3.5" mechanical drives, and 1.8" laptops are looking at things like low power consumption, it would be nice to see, assuming you can get hold of some 1.8" drives of both types.
  • Reflex - Monday, May 7, 2007 - link

    These drives are great in an embedded or manufacturing environment. Typically they are not written to frequently so you will never hit the write limitations. As a desktop PC drive however that write limitation could be hit very quickly, within a year even. Furthermore, having worked with these drives extensively in embedded environments, I will point out that when the write limitation is hit, you can no longer read the device either. Since there is no real warning, you simply suddenly lose access to all data on that drive.

    Solid state storage is the future, but not in the form of today's flash. The write limitation is severe, and very problematic. There are competing technologies that hopefully will show up sooner rather than later.
  • falc0ne - Monday, May 7, 2007 - link

    "The SSD16GB25/25M features a read seek time of less than 1ms, a maximum read/write speed of up to 28 MB/sec, a sustained transfer rate of 25 MB/sec, and an estimated write/erase cycle of approximately 100,000 cycles. This equates into a 1,000,000 hour MTBF rating and indicates a 10 year life expectancy based upon normal usage patterns. Super Talent has developed a set of proprietary wear leveling algorithms along with built in EDD/EDC functions to ensure excellent data integrity over the course of the drive's lifespan."
    This passage tells a completely different story..
  • mongo lloyd - Monday, May 7, 2007 - link

    Dan at Dansdata.com has said the exact same things as Reflex here for quite a while, and I tend to believe him more than SuperTalent's PR department.

    Also, as Reflex points out, NAND flash has usually way more than 100,000 write/erase cycles. 1 million cycle is not too uncommon.

    Regular CompactFlash memory (previously NOR flash, nowadays NAND flash) can take up to the same order of magnitude of write/erase cycles, and we all know memory cards for digital cameras have quite a finite life. And that's without putting a paging file on them.
  • PandaBear - Thursday, May 10, 2007 - link

    It depends on what kind of Nand. MLC usually can barely hit 100k for good ones (i.e. Toshiba and SanDisk) while 5k for bad ones (i.e. some batch of Samsung that got rejected and they have to dump in the spot market).

    For a camera, you will have to wear out your camera's shutter before you can wear out the card, but for HD, you better have very good wear leveling and good nand before even attempting).
  • Gary Key - Monday, May 7, 2007 - link

    The manufacturer's are taking a conservative path with the write/erase cycles per sector and it has been difficult to nail them down on it. The latest information I have from SanDisk as an example is that the non-recoverable error rate is 1 error per 10 to the 20th bits read on their current drives but they have not committed to active duty cycles or power-on hours in arriving at that calculation. The majority of the SSD suppliers are focused on MTBF ratings at this time. We will have further details in our consumer article as I expect Samsung to open up on the subject.
  • PandaBear - Thursday, May 10, 2007 - link

    Nand don't wear out by sitting around, they wear out by erase/program permanently or read disturb (recoverable just by a rewrite). So MTBF is meaningless. You have to do a lot of reading continuously in order to wear out by read. Actually there are algorithms that protect such cases already by refreshing it, so no harm is done.

    It is the write that really kills the sector, and Samsung did not mention its erase/program for a reason: they failed their own spec that many reputable clients rejected their order (i.e Sandisk rejected their order from Samsung MLC, and Apple uses excessive recovery algorithm to tolerate them on the audio playback, those Taiwanese cheap flash that you get for free with super slow performance or die after 2 weeks, well, you know what you will get when you open up the case).

    For their SSD, they may use SLC instead for the performance and reliability reason. It costs 20% more in spot market, but manufacturing cost is much higher (almost 2x when you think about it), so it will cost more.

  • Reflex - Monday, May 7, 2007 - link

    First off, 100,000 is a VERY VERY low write rating for flash, typical drives nowadays have 250k+ write cycles.

    Secondly, as pointed out by the article, the intended market is industrial and embedded, which as I stated originally, is an environment where the drives are rarely written to. Typically you have a bootable image in those environments, and it is write protected in some fashion, or requires a very small number of writes.

    And finally, if you think 100k write cycles is a lot, watch the drive light on the front of your PC someday. Every flash is a minimum of one write or read operation. Calculate how many times that flashes in ten minutes of 'typical' use. Then extrapolate. You'll understand what I mean.

Log in

Don't have an account? Sign up now