Intel's 45nm Dual-Core E8500: The Best Just Got Better
by Kris Boughton on March 5, 2008 3:00 AM EST- Posted in
- CPUs
Initial Thoughts and Recommendations
Although the release of Core 2 Duo E8000-series Wolfdale processors will never be as groundbreaking as the Conroe launch during the summer of 2006, Intel has done a fine job of building upon their already enormously successful Core 2 platform. Reductions in power consumption, improvements in energy efficiency (especially at idle), and the amazing overclocking capacity of these processor make them downright irresistible. Now that we've had a good chance to experience all that this new 45nm process has to offer, we will be hard pressed to buy anything else. Without a doubt, Intel has re-proclaimed their dominance in the marketplace of technology.
One of the most popular uses for processors of this caliber is 3D gaming. If excellent performance is already possible when running at default speeds, just imagine the stunning frame rates displayed when overclocking to 4GHz and beyond on air-cooling alone. (Ed: Assuming you have the GPUs to back that up, naturally.) Never before has achieving these levels of overclocks been so easy. However, don't become tempted by the incredible range of core voltage selections your premium motherboard offers; it's important not to lose sight of the bigger picture.
These processors are built on a new 45nm High-K process that invariably makes them predisposed to accelerated degradation when subjected to the same voltages used with last-generation's 65nm offerings. Although we certainly support overclocking as an easy and inexpensive means of improving overall system performance, we also advocate the appropriate use of self-restraint when it comes to choosing a final CPU voltage. Pushing 0.1V more Vcore through a processor for that last 50MHz does not make a lot of sense when you think about it.
More than a couple Penryn dies will comfortably fit on a single 300mm wafer used in the manufacturing of these processors.
Perhaps even more exciting than the prospect of assembling a game rig is the potential these processors possess for use in the HTPC arena. Some of our initial tinkering has allowed us to realize the hope of creating a complete home entertainment solution capable of full-load operation at less than 90W power draw from the wall. With the recent availability and - dare we say it? - affordability of Blu-ray drives in the US, the prospect of putting together an all-in-one multimedia powerhouse that runs both cool and silent is finally becoming a reality. Of the models soon to hit the shelves, the E8200 at 2.66GHz or E8300 at 2.83GHz are sure to be winners when looking for processors suited for just these types of low-power applications. Couple this with an Intel G35 chipset with integrated graphics, Clear View Technology, and onboard HD audio over HDMI and you have all the makings of a serious HTPC.
Intel has also worked hard to make all of this performance affordable. Many US retailers now stock the 65nm Q6600 quad-core CPU at less than $200, which places it squarely in the 45nm dual-core price range - something to think about as you make your next purchasing decision. However, if it comes down to the choice between a 65nm and 45nm CPU we would pick the latter every time - they are just that good. The only question now is exactly when Intel will decide to start shipping in volume.
45 Comments
View All Comments
TheJian - Thursday, March 6, 2008 - link
http://www.newegg.com/Product/Product.aspx?Item=N8...">http://www.newegg.com/Product/Product.aspx?Item=N8...You can buy a Radeon 3850 and triple your 6800 performance (assuming it's a GT with an ultra it would be just under triple). Check tomshardware.com and compare cards. You'd probably end up closer to double performance because of a weaker cpu, but still once you saw your fps limit due to cpu you can crank the hell out of the card for better looks in the game. $225 vs probably $650-700 for a new board+cpu+memory+vidcard+probably PSU to handle it all. If you have socket 939 you can still get a dual core Opty144 for $97 on pricewatch :) Overclock the crap out of it you might hit 2.6-2.8 and its a dual core. So around $325 for a lot longer life and easy changes. It will continue to get better as dual core games become dominant. While I would always tell someone to spend the extra money on the Intel currently (jeez, the OC'ing is amazing..run at default until slow then bump it up a ghz/core, that's awesome), if you're on a budget a dual core opty and a 3850 looks pretty good at less than half the cost and both are easy to change out. Just a chip and a card. That's like a 15 minute upgrade. Just a thought, in case you didn't know they had an excellent AGP card out there for you. :)
mmntech - Wednesday, March 5, 2008 - link
I'm in the same boat with the X2 3800+. Anyway, when it comes to dual vs quad, the same rules apply back when the debate was single versus dual. Very few games support quad core but a quad will be more future proof and give better multitasking. The ultimate question is how much you want to spend, how long you intend to keep the processor, and what the future road maps for games and CPU tech are within that period.I'm a long time AMD/nVidia man but I'm liking what Intel and ATI are putting out. I'm definitely considering these Wolfdales, especially that sub $200 one. I'm going to wait for the prices and benchmarks for the triple core Phenoms though before I begin planning an upgrade.
Margalus - Wednesday, March 5, 2008 - link
the current state of affairs generally point to the higher clocked dual core. Very few games can take advantage of 4 cores, so the more speed you get the better.Spacecomber - Wednesday, March 5, 2008 - link
This has been mentioned in a couple of articles, now, that what these processors will run at with no more than 1.45v core voltage applied is what really matters for most people buying one of these 45nm chips. So, it begs the question, what are the results at this voltage?While the section on processor failure was somewhat interesting, I think that it should have been a separate article.
retrospooty - Wednesday, March 5, 2008 - link
"these processors will run (safely) at with no more than 1.45v core voltage applied is what really matters for most people buying one of these 45nm chips. So, it begs the question, what are the results at this voltage"Very good point. Since these CPU's are deemed safe up to 1.45 volt, lets see how far they clock at 1.45 volts. 4.5 ghz at 1.6 volts is nice for a suicide run, but lets see it at 1.45.
Spoelie - Wednesday, March 5, 2008 - link
This reads like an excerpt of a press release:"We could argue that when it came to winning the admiration and approval of overclockers, enthusiasts, and power users alike, no other single common product change could have garnered the same overwhelming success."
Except that it was not. It was a knee-jerk reaction to the K8 release way back in 2003. It was too expensive to matter to anyone except for the filthy rich. The FX around that time was more successful. In recent years they just polished the concept a bit, but gaining admiration and overwhelming success because of it?? I think not. The Conroe architecture was the catalyst, not some expensive niche product.
"Our love affair with the quad-core began not too long ago, starting with the release of Intel's QX6700 Extreme Edition processor. Ever since then Intel has been aggressive in their campaign to promote these processors to users that demand unrivaled performance and the absolute maximum amount of jaw-dropping, raw processing power possible from a single-socket desktop solution. Quickly following their 2.66GHz quad-core offering was the QX6800 processor, a revolutionary release in its own right in that it marked the first time users could purchase a processor with four cores that operated at the same frequency as the current top dual-core bin - at the time the 2.93GHz X6800."
Speed bump revolutionary? Oh well ;)
No beef with the rest of the article, those two paragraphs just stand out as being overly enthousiastic, more so than informative.
MaulSidious - Wednesday, March 5, 2008 - link
this articles a bit late isn't it? seeing as they been out for quite a while now.MrModulator - Wednesday, March 5, 2008 - link
Well it's being updated from time to time. I think it is relevant since Cubase 4 is still the latest version used of cubase and the performance is the same today. What is important with this is that they measure up two equally clocked processors where the difference is in the number of cores. Yes, the quad is better at higher latencys but it loses the advantage at lower latencys and even gets beaten by the dual-core.More of a reminder of the limitations of current day quadcores in some situations. This will probably change when Nehalem is introduced with its on-die memory controller, a higher FSB and faster DD3 memory.
adiposity - Wednesday, March 5, 2008 - link
Uh, what? I think he's saying these processors were on the shelves over a month ago. This article is acting like they are just about to come out!-Dan
MrModulator - Wednesday, March 5, 2008 - link
Yeah, you talk about games and maximum cpufrequency on dual core is important, but there are other areas that are much more interesting. Performance for sequencers where you make music (in DAW-based computeres) is seldom mentioned. It is very important to be able to cram out every ounce of performance in real-time with a lot of software synthesizers and effects using a low latency setting(not memory latency but the delay from when you press a key on the synt until it is procesed in the computer and put out from the soundcard for example).Here's an interesting benchmark:
http://www.adkproaudio.com/benchmarks.cfm">http://www.adkproaudio.com/benchmarks.cfm
(Sorry, using the linking button didn't work, you have to copy the link manually)
If you scroll down to the Cubase4/Nuendo3 Test you can compare the QX6850(4 core) with the E6850 (2 core). They both run at 3 GHz. Look at what happens when the latency is lowered. Yes the dualcore actually beats the quadcore, even though these applications use all cores available. The reason could be that all 4 cores compete for the fsb and memory access when the latency is really low. Very interesting indeed, as DAW is an area in much more for cpu than gaming...