The SSD Anthology: Understanding SSDs and New Drives from OCZ
by Anand Lal Shimpi on March 18, 2009 12:00 AM EST- Posted in
- Storage
The Anatomy of an SSD
Let’s meet Mr. N-channel MOSFET again:
Say Hello
This is the building block of NAND-flash; one transistor is required per cell. A single NAND-flash cell can either store one or two bits of data. If it stores one, then it’s called a Single Level Cell (SLC) flash and if it stores two then it’s a Multi Level Cell (MLC) flash. Both are physically made the same way; in fact there’s nothing that separates MLC from SLC flash, it’s just a matter of how the data is stored in and read from the cell.
SLC flash (left) vs. MLC flash (right)
Flash is read from and written to in a guess-and-test fashion. You apply a voltage to the cell and check to see how it responds. You keep increasing the voltage until you get a result.
SLC NAND flash | MLC NAND flash | |
Random Read | 25 µs | 50 µs |
Erase | 2ms per block | 2ms per block |
Programming | 250 µs | 900 µs |
With four voltage levels to check, MLC flash takes around 3x longer to write to as SLC. On the flip side you get twice the capacity at the same cost. Because of this distinction, and the fact that even MLC flash is more than fast enough for a SSD, you’ll only see MLC used for desktop SSDs while SLC is used for enterprise level server SSDs.
Cells are strung together in arrays as depicted in the image to the right
So a single cell stores either one or two bits of data, but where do we go from there? Groups of cells are organized into pages, the smallest structure that’s readable/writable in a SSD. Today 4KB pages are standard on SSDs.
Pages are grouped together into blocks; today it’s common to have 128 pages in a block (512KB in a block). A block is the smallest structure that can be erased in a NAND-flash device. So while you can read from and write to a page, you can only erase a block (128 pages at a time). This is where many of the SSD’s problems stem from, I’ll repeat this again later because it’s one of the most important parts of understanding SSDs.
Arrays of cells are grouped into a page, arrays of pages are grouped into blocks
Blocks are then grouped into planes, and you’ll find multiple planes on a single NAND-flash die.
The combining doesn’t stop there; you can usually find either one, two or four die per package. While you’ll see a single NAND-flash IC, there may actually be two or four die in that package. You can also stack multiple ICs on top of each other to minimize board real estate usage.
250 Comments
View All Comments
ryedizzel - Thursday, March 19, 2009 - link
Anand,I just wanted to thank you for an amazing article. I am a very picky buyer and technology critic, so I always come to your site for the ‘real’ story on things. In fact for the amount of time, research, and (useful) testing methodologies you invest, I almost feel guilty receiving this information for free. Especially since your findings benefit the industry as a whole since it causes manufacturer’s to fix/improve their products (well at least the smart ones do). The i7 motherboard roundup was another great example of this. Seriously, if you have a place for donations I would send you $50 in a heartbeat. I know it’s not much but if others did the same it would add up to a decent token of appreciation.
Oh and please don’t take people’s grammar or nitpicky corrections the wrong way. Yes it can be annoying, but in the end it does help the article become closer to perfect since others catch little things overlooked by human error. In the end we are all grateful for these articles, otherwise we wouldn’t be here reading them!
bsoft16384 - Thursday, March 19, 2009 - link
You know, the JMicron SSDs really aren't so bad. Yes, you'd have to be crazy to spend $400 on one when there are better options like the X25-M (or the new Vertex series for that matter).But I paid $65 for my 30GiB OCZ "Core" SSD. Yeah, random writes are piss slow. I knew this. The drive replaced the 5400.5 that came with my EEE PC.
I'm not going to be doing any 'extensive multitasking' on my EEE. I'm not running a file server, I certainly don't have antivirus in the background, and I don't spend all day installing new apps.
I'm running 7. Compared with the 5400.5, the system boots faster, Chrome loads faster, but Windows updates take longer. That's a trade-off I'm willing to deal with, considering that I get less noise and more battery life in return.
I can tell you this - the JMicron SSDs beat the pants off of the PCIe MLC SSDs that ship with many netbooks.
So, yeah, I guess this is a product that's "unfit for market". But it's perfect for some of us. If I wanted a boot drive for a Linux media/backup server (along with HDDs for storage), I could see choosing a $50 SSD over a $50 HDD.
It's all about your needs. No one is pretending that JMicron SSDs are fast, at least not at writing. But if your usage is mostly read-centric (or "nothing-centric", as is frequently the case on netbooks), and your chief criteria are low power and low price, the JMicron SSDs do quite well.
petersterncan - Thursday, March 19, 2009 - link
Anand,That was an awesome article... and good for you to give OCZ to do the right thing... and they did!
Kudos also to OCZ for actually listening to feedback and doing something about it.
Adul - Thursday, March 19, 2009 - link
Good work Anand :)SSDMaster - Thursday, March 19, 2009 - link
The stuttering problem with SSD's can be fixed with diskpart. Go do some research before you post an article this massive and convoluted.goinginstyle - Thursday, March 19, 2009 - link
No it does not, it will help if the partition is properly aligned but it is not a cure, neither is the rest of the voodoo magic being spouted on the OCZ forums. They help, but do not cure the stuttering problem with the JMicron based drives. I just love the fact that OCZ wants to sell you a drive (Core series) that does not work properly, have you purchase third party software, and then hack the OS in order to improve the performance of the product. Glad to see it fixed with the Vertex and Summit drives though, but it will take a long time before I even think about using an OCZ product again. I was hoping to see the new ADATA and SuperTalent drives in this article, maybe those are coming in the next segment he mentioned.SSDMaster - Friday, March 20, 2009 - link
Yes, it does.I have a Core series 60GB OCZ drive. I bought it right before Newegg increased the price on the drives. The stuttering was horrible, and worthless even as a secondary drive if it was formatted with XP. Also, after using Diskpart and aligning the drive I could not install XP on the drive and have it bootable.. Which sucked.
But there's ways around that, and guess what, I have a stutter free flash drive for cheap that gets very good performance numbers, and boots Server 2008 in under 10 seconds.
bsoft16384 - Thursday, March 19, 2009 - link
OCZ's product works fine. You may not like the performance, but it's certainly not unusable.The $65 I paid for my 30GiB OCZ "Solid" SSD is about what you'd pay for a USB flash drive. The disk I have has a USB interface, which is very convenient, plus it's plenty fast enough for my EEE PC.
I'm glad that Anand has done these reviews. People need to understand what they're getting into when they by a JMicron SSD. If you don't expect much, you won't be disappointed.
Arguably for a normal notebook/desktop you should buy a normal hard drive if your budget is under $100. But the JMicron SSDs do a good job in netbooks (which, again, aren't too fast to begin with) at a very low price.
I have aligned my partitions and disabled swap on my Windows 7 install (on my EEE). I also have 2GB of memory in my EEE. I haven't done any fancy tweaking on the OS.
Compared with the EEE 900A that I had briefly (PCIe SSD), my EEE 900HA is dramatically faster. You can't run XP or Vista on PCIe SSDs unless you have a lot of patience. You *can* run it on a JMicron SSD.
I honestly don't notice any stuttering. I don't run antivirus and I don't multitask much on this machine. If I demanded from my EEE what I demand from my desktop (Q9300 + 8GB + WD6400AAKS), I know that the SSD would choke up. But I'm not going to do that on a 1.6GHz single-core Atom anyway.
So, yeah, OK. I guess I think that trashing JMicron SSDs is a little like trashing USB flash drives for being slow. Paying $300 for a UFD would be stupid, as is paying $300 for a JMicron SSD. But in the sub-$100 category, you don't expect much.
When better SSDs drop below $100, maybe I'll upgrade. Until then, I'm enjoying 5 hours of battery life on my 900HA.
tomoyo - Thursday, March 19, 2009 - link
Well I think it's unusable for my needs if I'm running it as an operating system drive. I place a giant important on the latency of the drive at that point and it certainly includes random writes. Which is why I would never ever buy an ssd that's majorly below the Intel write performance. It's not worth the price premium or loss of storage size compared to the standard hard drive.Bikerskummm - Thursday, March 19, 2009 - link
Fantastic article Anand!Just a few thoughts:
I have had some trouble replicating some of the Samsung SLC results...
Despite filling the drive up and emulating a well used drive as described in the article I cannot get my Sammy drive's performance to degrade as much as you managed to especially regarding random write performance...
Now my system used for testing is a socket 775 (qx9650) and I was testing on ICH9R and WINXP (SP3) but still I would expect to see similar figures ...
I do not have an X58 system to test on at the moment but I would be very interested if The Sammy SLC drives were shown to degrade faster / perform worse with a X58 / ICH10R / Vista x64 (SP1?) setup...