The Problem with Intel's Approach

The major issue with Intel's approach to dual core designs is that the dual cores must contest with one another for bandwidth across Intel's 64-bit NetBurst FSB. To make matters worse, the x-series line of dual core CPUs are currently only slated for use with an 800MHz FSB, instead of Intel's soon to be announced 1066MHz FSB. The reduction in bandwidth will hurt performance scalability and we continue to wonder why Intel is reluctant to transition more of their CPUs to the 1066MHz FSB, especially the dual core chips that definitely need it.

With only a 64-bit FSB running at 800MHz, a single x40 processor will only have 6.4GB/s of bandwidth to the rest of the system. Now that 6.4GB/s is fine for a single CPU, but an x40 with two cores the bandwidth requirements go up significantly.

AMD's Strategy

While Intel's current roadmap appears to place dual core on the desktop before it makes its way to the enterprise (other than with Itanium), AMD's strategy is reversed - with dual core appearing in workstations and on servers before making a splash on the desktop.

Overall, AMD's approach simply makes more sense, since the overall performance benefit to dual core on the desktop will be minimal at best but strong in very specific applications and usage patterns. With most desktop applications continuing to be single threaded, dual core will still have to wait until there is more application support before truly being useful on the desktop. Heavy multitaskers and those running workstation applications will appreciate the benefits of dual core, but gamers and most other users will find higher clocked single core chips to be better suited for their needs.

The scenario is exactly the opposite in the workstation and server space, with the applications already seeing huge benefits from going to multiple processors thanks to their multithreaded nature.

When AMD mentions that their K8 architecture was designed for multicore operation from the start, they weren't lying. Each Socket-939 or Socket-940 K8 chip, whether it's an Athlon 64, Athlon 64 FX or Opteron, features three Hyper Transport links (whether they are all operational is another question). In order to create a dual core version of a K8 based chip, you simply remove a single pair of Hyper Transport PHYs, one from each chip, and fuse the two Hyper Transport links together - thus creating a direct path of communication between the two cores, capable of transmitting data at up to 8GB/s (at 1GHz) between the two chips. Update: There is some debate as to how AMD implements dual core in their K8 architecture. The above description was provided by AMD from an earlier discussion but many readers have emailed to point out that the two cores are connected at the SRQ level. We are awaiting official confirmation from AMD as to exactly how their dual core technology is implemented. Update 2:While AMD never got back to us with an official response, unofficially they did confirm that the two cores on a single dual core Opteron die do communicate at full speed and are not connected at the HT level. We apologize for the error.

AMD's performance limitation here will be memory bandwidth, with the two K8 cores sharing the 128-bit DDR memory bus. While we currently don't see a huge performance increase from going to a 128-bit memory bus from a single channel 64-bit interface, the move to dual core will definitely make greater use of memory bandwidth.

AMD continues to list the second half of 2005 as the introduction timeframe for their dual core CPUs, with Opteron coming first and then Athlon 64 FX. Once again, as with all release dates, nothing is set in stone, but right now it looks like that both AMD and Intel are planning on having dual core on the desktop in the same general timeframe.

AMD has yet to reveal what the official specifications of their upcoming dual core desktop products are, but based on roadmaps and what we've seen, it would seem that the first dual core desktop parts will be based on two 90nm Athlon 64 FX cores with a shared memory controller. Interally AMD is referring to this CPU as "Toledo" as we've already published.

Dual Core Mobility Final Words
Comments Locked

59 Comments

View All Comments

  • HardwareD00d - Friday, October 22, 2004 - link

    #16, The reason hyperthreading will be disabled with dual cores is because WindowsXP only support 2 processors right now. I'm not sure about Windows 2000, but Intel has said you should not enable HT with that OS.

    I heard that Intel is hoping that M$ makes a "patch" to XP so it will do 4 processors. AFAIK, Intel is waiting on that for the "official word" on HT in dual core.
  • thelanx - Friday, October 22, 2004 - link

    So these are underclocked 3.8 prescotts? That could be prove to be a great overclock with water cooling maybe, as it'll be virtually garuanteed 3.8 GHz or more, just gotta make sure you've got adequate cooling.
  • thelanx - Friday, October 22, 2004 - link

  • GhandiInstinct - Friday, October 22, 2004 - link

    So for now it's just an advanced version of hyper-threading, instead of virtual cpus you have physical cpus, thanks Anand.
  • sprockkets - Friday, October 22, 2004 - link

    How are the 2 cpus connected with Intel? Why disable hyper-threading for having extra cores, oh well, guess it makes some sense. What then we could do is make 2 cores with a split amount of ALUs and FPUs.
  • Jeff7181 - Friday, October 22, 2004 - link

    #13... Water cooling won't be a necessity. Don't forget, with the increase in heat from dual cores there's also an increase in surface area for that heat to be dissipated through. I don't think you'll see a huge increase in CPU temperature at all. What WILL increase more is power requirements, and case temperate... as well as the temperature of the room the PC is in and probably the size of the heatsink.
  • xsilver - Friday, October 22, 2004 - link

    Anand, how did you measure power consumption from your last batch of reviews? hardware or software? links? thanks

    Regarding dual cores, aren't these cpu's going to be horrendously expensive to produce if they are basically 2x prescotts?-- and if there is 200w power consumption, isn't that mandatory water cooling territory?
  • Anand Lal Shimpi - Friday, October 22, 2004 - link

    Jeff7181

    True, but I was mostly referring to 800MHz FSB chips, the 533MHz parts will still be available then too.

    supertyler

    You pretty much answered your own question there, monitoring user inputs are generally not CPU intensive tasks at all - in fact you could say that those tasks are mostly user limited :) A huge benefit to dual core (or SMP in general) is that if you have one renegade application that eats up a ton of CPU power, you still have a separate CPU that can continue to work for you during the interim. It is a tangible performance improvement, but one of few for desktop uses.

    Marsumane

    It's tough to say what's going on with AMD until we actually see more roadmaps. For now, they haven't increased clock speed all that much either, remember we're still at 2.6GHz at a maximum with the fastest non-FX Athlon 64 running at 2.4GHz. As far as building more fabs goes, they cost about $2.5B a piece and take quite a bit of time to build, I don't think that's exactly the quickest fix to the situation at hand :)

    skunkbuster

    Remember that Banias and Dothan are designed with clock speed limitations in mind, they need smaller manufacturing processes to actually reach higher clock speeds as they natively have very short ramping abilities. For more information take a look at my Banias or Dothan reviews.

    GhandiInstinct

    In a single threaded application, no they will not be any faster. In a game for example, two 3.2GHz cores will not be faster than a single 3.2GHz core.

    Take care,
    Anand
  • klah - Friday, October 22, 2004 - link

    These will still be using 1.385V? If so, 200W+ power consumption?

  • GhandiInstinct - Friday, October 22, 2004 - link

    "The vast majority of applications on the desktop are still single threaded, thus garnering no real performance benefit from moving to dual core"

    Anand,

    So two 3.2ghz cores will not be faster than one 3.2ghz core?

Log in

Don't have an account? Sign up now