Usage Patterns

Before getting into the architecture of Cell, let’s talk a bit about the types of workloads for which Cell and other microprocessors are currently being built.

In the past, office application performance was a driving factor behind microprocessor development.   Before multitasking and before email, there was single application performance and for the most part, we were talking about office applications, word processors, spreadsheets, etc.   Thus, most microprocessors were designed toward incredible single application, single task performance.

As microprocessors became more powerful, the software followed - multitasking environments were born.   The vast majority of computer users, however, were still focused on single application usage, so microprocessor development continued to focus on single-threaded performance (single application, single task performance).

Over the years, the single-threaded performance demands grew.   Microsoft Word was no longer the defining application, but things like games, media processing and dynamic content creation became the applications that ate up the most CPU cycles.   This is where we are today with workloads being a mix of office, 3D games, 3D content creation and media encoding/decoding/transcoding that consume our CPU cycles.   But in order to understand the creation of a new architecture like Cell, you have to understand where these workloads are headed.   Just as the types of applications demanding performance today are much different than those run 10 years ago, the same will apply to applications in the next decade.   And given that a new microprocessor architecture takes about 5 years to develop, it is feasible to introduce a new architecture geared towards these new usage models now.

Intel spoke a lot about future usage models at their most recent IDF, things like real time voice recognition (and even translation), unstructured search (e.g. Google image search), even better physics and AI models in games, more feature-rich user interfaces (e.g. hand gesture recognition), etc.   These are the usage models of the future, and as such, they have a different set of demands on microprocessors and their associated architectures.

The type of performance required to enable these types of usage models is significantly higher than what we have available to us today.   Conventionally, performance increases from one microprocessor generation to the next by optimizing single thread performance.   There are a number of ways of improving single thread performance, either by driving up the clock speed or by increasing the instructions executed per clock (IPC).   Taking it one step further, the more parallelism you can extract from a single thread, the better your performance will be - this type of parallelism is known as instruction level parallelism (ILP) as it involves executing as many instructions out of a thread at the same time.

The problem with improving performance through increasing ILP is that from one generation to the next, you’re only talking about a 10% - 20% increase in performance.   Yet, the usage models that we’re talking about for the future require significantly more than the type of gains that we’ve been getting in the past.   With power limitations preventing clock speeds from scaling too high, it’s clear that there needs to be another way of improving performance.

The major players in the microprocessor industry have all pretty much agreed that the only way to get the type of performance gains that are necessary is by moving towards multi-core architectures.   Through a combination of multithreaded applications and multi-core processors, you can get the types of performance increases that should allow for these types of applications to be developed.   Instead of focusing on extracting ILP to improve performance, these multi-core processors extract parallelism on a thread level to improve performance (thread level parallelism - TLP).

It’s not as straightforward as that, however.  There are a handful of decisions that need to be made.   How powerful do you make each core in your multi-core microprocessor?   Do you have a small array of powerful processors or a larger array of simpler processors?   How do they communicate with one another?   How do you deal with feeding a multi-core processor with enough memory bandwidth?

The Cell implementation is just one solution to the problem...

Index High Level Overview of Cell
Comments Locked

70 Comments

View All Comments

  • faboloso112 - Thursday, March 17, 2005 - link

    ahh i love bedtime stories!
    great read...VERY informative!
  • ksherman - Thursday, March 17, 2005 - link

    sweet article! way over my head, but there were some parts that were dropped down to my level of understanding. Leave it to anand to tell the real story. It will be interesting to see how willing some companies will be to accomidate Sony's ratical processor... bu tas long as theirs money... Do you think that it is possible to (down the road) flop a x86 chip in place of the PPE? wouldn't hat make the Cell compatible with the current processing standards?
  • ProviaFan - Thursday, March 17, 2005 - link

    Describing this as a "sit down read" type of article makes me want to print it out to put it in the magazine rack, because I don't have a laptop + 802.11g to peruse AnandTech while I'm, er... ;)
  • xsilver - Thursday, March 17, 2005 - link

    nice, definitley one of those "sit down reads".... some serious shiznit ;)
  • cosmotic - Thursday, March 17, 2005 - link

    OMG! FIRST POST LOL ROFL LMAO OMG!!! LOOK WHOS COOL!!!
  • Fricardo - Thursday, March 17, 2005 - link

    Finally! Thanks guys.
  • Bawl - Saturday, January 25, 2014 - link

    I just love this deep analysis of one of the most mist-understanding processor of the last decade.

    Too bad that after spending more than a half-of-billion dollars, SonyThoshibaIBM didn't release the presumably outstanding CellTwo.
  • Ferrx - Sunday, December 20, 2015 - link

    Hi, can you help me to understand this ? I don't understand at all about these.
    _______ _________ ______
    |Decode| | Execute | | Write |
    ----------- ---------------- -----------
    | I1 | I2 | | | | | | | |
    | I3 | I4 | | I1 | I2 | | | | |
    | I3 | I4 | | I1 | | | | I2 | |
    | | I4 | | | | | | I1 | I3 |
    | I5 | I6 | | | | I4 | | I4 | |
    | | I6 | | | I5 | | | I5 | |
    | | | | | I6 | | | I6 | |
    _______ _________ ______

    In "Decode", each row has 2 columns. What do First and Second Column mean ?
    same as "Write"
    And in "Execute, each row has 3 columns. What do First, Second and Third column mean ?
    And how is the process ? (The current table is about "In-Order Issue with Out-of-Order Completion").

    I've read it many times, in the "Instruction Level Parallelism". But I still don't have any idea about it.
  • Ferrx - Sunday, December 20, 2015 - link

    Hi, can you help me to understand this ? I don't understand at all about these.
    _______   _________   ______
    |Decode|   | Execute |   | Write |
    -----------   ----------------   -----------
    | I1 | I2 |   | | | |  | | |
    | I3 | I4 |   | I1 | I2 | | | | |
    | I3 | I4 | | I1 | | | | I2 | |
    | | I4 | | | | | | I1 | I3 |
    | I5 | I6 | | | | I4 | | I4 | |
    | | I6 | | | I5 | | | I5 | |
    | | | | | I6 | | | I6 | |
    _______ _________ ______

    In "Decode", each row has 2 columns. What do First and Second Column mean ?
    same as "Write"
    And in "Execute, each row has 3 columns. What do First, Second and Third column mean ?
    And how is the process ? (The current table is about "In-Order Issue with Out-of-Order Completion").
    I've read it many times, in the "Instruction Level Parallelism". But I still don't have any idea about it.
  • Ferrx - Sunday, December 20, 2015 - link

    Aww... Can't do tab-'ing' 0__0

Log in

Don't have an account? Sign up now